Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct;106(4):1020-1031.
doi: 10.3945/ajcn.116.145060. Epub 2017 Aug 16.

Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants

Affiliations
Free article

Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants

Daniela Paganini et al. Am J Clin Nutr. 2017 Oct.
Free article

Abstract

Background: Whether consumption of prebiotics increases iron absorption in infants is unclear.Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants.Design: Infants (n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57FeFum+Na58FeEDTA or ferrous sulfate (54FeSO4). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models.Results: There was a significant group-by-compound interaction on iron absorption (P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, (P < 0.001) and, in the Fe+GOS group, were 18.8% (IQR: 8.3-37.5%) and 25.5% (IQR: 15.1-37.8%), respectively (P = 0.124). Between groups, iron absorption was greater from the FeFum+NaFeEDTA (P = 0.047) in the Fe+GOS group but not from the FeSO4 (P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. (P = 0.008) and Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.018); Lactobacillus/Pediococcus/Leuconostoc spp. decreased in the Fe group (P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group (P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH (P < 0.001) and positively correlated with Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.001).Conclusion: GOS consumption by infants increased iron absorption by 62% from an MNP containing FeFum+NaFeEDTA, thereby possibly reflecting greater colonic iron absorption. This trial was registered at clinicaltrials.gov as NCT02666417.

Keywords: GOS; Kenya; anemia; galacto-oligosaccharides; infants; iron absorption; iron deficiency; micronutrient powder; prebiotics; stable isotopes.

PubMed Disclaimer

MeSH terms

Associated data