Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2017 Aug 15:12:47.
doi: 10.1186/s40793-017-0260-4. eCollection 2017.

The draft genome of the hyperthermophilic archaeon Pyrodictium delaneyi strain hulk, an iron and nitrate reducer, reveals the capacity for sulfate reduction

Affiliations
Case Reports

The draft genome of the hyperthermophilic archaeon Pyrodictium delaneyi strain hulk, an iron and nitrate reducer, reveals the capacity for sulfate reduction

Lucas M Demey et al. Stand Genomic Sci. .

Abstract

Pyrodictium delaneyi strain Hulk is a newly sequenced strain isolated from chimney samples collected from the Hulk sulfide mound on the main Endeavour Segment of the Juan de Fuca Ridge (47.9501 latitude, -129.0970 longitude, depth 2200 m) in the Northeast Pacific Ocean. The draft genome of strain Hulk shared 99.77% similarity with the complete genome of the type strain Su06T, which shares with strain Hulk the ability to reduce iron and nitrate for respiration. The annotation of the genome of strain Hulk identified genes for the reduction of several sulfur-containing electron acceptors, an unsuspected respiratory capability in this species that was experimentally confirmed for strain Hulk. This makes P. delaneyi strain Hulk the first hyperthermophilic archaeon known to gain energy for growth by reduction of iron, nitrate, and sulfur-containing electron acceptors. Here we present the most notable features of the genome of P. delaneyi strain Hulk and identify genes encoding proteins critical to its respiratory versatility at high temperatures. The description presented here corresponds to a draft genome sequence containing 2,042,801 bp in 9 contigs, 2019 protein-coding genes, 53 RNA genes, and 1365 hypothetical genes.

Keywords: Hyperthermophile; Juan de Fuca ridge; Pyrodictiaceae; Pyrodictium delaneyi strain Hulk; Sulfate reducer.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Phylogenetic tree constructed with the maximum likelihood algorithm comparing the 16S rRNA gene sequence from P. delaneyi, strain Hulk to the species type strain Su06T and other hyperthermophilic archaea. GenBank accession numbers are listed in parentheses. Bootstrap values displayed at branch points were determined from 100 replicates [72, 73]
Fig. 2
Fig. 2
Morphological features. Transmission (a) and scanning (b) electron micrographs of a cell of strain Hulk grown with formate as the electron donor and Fe(III) citrate and sulfate as the electron acceptors, respectively. Arrow in (a) points at the lophotrichous flagella and in (b) at membrane vesicles. Scale bars, 200 nm
Fig. 3
Fig. 3
Sulfur metabolism. a Predicted pathway for sulfate (SO4 2−) and thiosulfate (S2O3 2−) membrane transport and cytoplasmic assimilation (black arrows) or dissimilation (gray arrows) by strain Hulk. Dashed arrows with question marks indicate reaction enzymes lacking obvious matches in the draft genome. The sulfate, thiosulfate, and sulfite (SO3 2−) anions and the sulfide (H2S) product are boxed. Annotated ORF and Enzyme Commission (EC) numbers are shown in gray for each reaction enzyme. b-c Growth with formate and AQDS (b) or DMSO (c) as electron acceptors. The reduction of AQDS by strain Hulk turns the cultures first brown, then orange (b). The reduction of DMSO supports increases in cell numbers compared to controls without the electron donor (c). All cultures were prepared at the optimum pH and salt concentration (7 and 2%, respectively) and incubated at the optimum temperature (90 °C)
Fig. 4
Fig. 4
Central metabolism. EMP pathway (a), TCA cycle (b), and ribulose monophosphate (RuMP) pathway (c) predicted from the draft genome of strain Hulk. Abbreviations: P, phosphate; DHAP, dihydroxyacetone phosphate. The annotated ORF number (top) and corresponding EC number (bottom, italicized) are shown in gray. Dashed gray arrows indicate reactions catalyzed by enzymes not annotated in the draft genome
Fig. 5
Fig. 5
Iron metabolism and motility. a-b Growth (cell numbers, black) and Fe(II) accumulation (maroon) of P. delaneyi strain Hulk in cultures with H2 and poorly crystalline Fe(III) oxides (a) or with formate and Fe(III) citrate (b). No donor controls (open symbols) are also shown. Each data point shows the average of two biological replicates. c Archaellum gene cluster in the draft genome of strain Hulk. (DD, Death Domain superfamily protein)
Fig. 6
Fig. 6
Nitrogen metabolism. a Genomic predictions for ammonium (NH4) assimilation and Nap pathway for the reduction of nitrate (NO3 ) to nitrite (NO2 ) in strain Hulk. (CM, cytoplasmic membrane). b Growth (cell numbers per ml) of strain Hulk with formate and nitrate at optimum conditions of temperature (90 °C), pH (7), and osmolarity (2% NaCl) in reference to controls without the electron donor (formate)

References

    1. Kashefi K. Hyperthermophiles: metabolic diversity and biotechnological applications. In: P. AR, editor. Extremophiles: microbiology and biotechnology. Norfolk: Caister Academic Press; 2012. p. 183–231.
    1. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO. Pyrolobus fumari, gen. And sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles. 1997;1(1):14–21. doi: 10.1007/s007920050010. - DOI - PubMed
    1. Lin TJ, El Sebae G, Jung J-H, Jung D-H, Park C-S, Holden JF. Pyrodictium delaneyi sp. nov., a hyperthermophilic autotrophic archaeon that reduces Fe(III) oxide and nitrate. IJSEM. 2016;(66):3372–6. - PMC - PubMed
    1. Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, et al. Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. System Appl Microbiol. 1991;14:245–253. doi: 10.1016/S0723-2020(11)80376-0. - DOI
    1. Zillig W, Holz I, Janekovic D, Klenk HP, Imsel E, Trent J, et al. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol. 1990;172(7):3959–3965. doi: 10.1128/jb.172.7.3959-3965.1990. - DOI - PMC - PubMed

Publication types

LinkOut - more resources