Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;31(12).
doi: 10.1002/jbt.21977. Epub 2017 Aug 16.

Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats

Affiliations

Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats

Hanan A Rizk et al. J Biochem Mol Toxicol. 2017 Dec.

Abstract

Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use cause neurobiological side effects. The aim of the present study was to investigate the prophylactic effect exerted by daily administration of ellagic acid (EA) and rosmarinic acid (RA) on DOX-induced neurotoxicity in rats. Our data showed that DOX-induced significant elevation of brain malondialdehyde, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), caspase-3, and cholinesterase associated with significant reduction in reduced glutathione, monoamines namely serotonin, dopamine, as well as norepinephrine. Concomitant administration of EA (10 mg/kg/day, p.o. for 14 days) and/or RA (75 mg/kg/day, p.o. for 14 days) with DOX significantly mitigated the neural changes induced by DOX. Meanwhile, treatment ameliorated pro-inflammatory cytokines as TNF-α, iNOS, and attenuated oxidative stress biomarkers as well as brain monoamines. In conclusion, EA and RA can effectively protect against DOX-induced neurotoxicity, and the mechanisms underlying the neuroprotective effect are potentially associated with its antioxidant, anti-inflammatory, and antiapoptotic properties.

Keywords: brain; doxorubicin; ellagic acid; rats; rosmarinic acid.

PubMed Disclaimer

MeSH terms

LinkOut - more resources