Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2020 Dec;34(12):3395-3402.
doi: 10.1519/JSC.0000000000002143.

Kinematic and Neuromuscular Measures of Intensity During Plyometric Jumps

Affiliations
Randomized Controlled Trial

Kinematic and Neuromuscular Measures of Intensity During Plyometric Jumps

David Cristóbal Andrade et al. J Strength Cond Res. 2020 Dec.

Abstract

Andrade, DC, Manzo, O, Beltrán, AR, Álvarez, C, Del Rio, R, Toledo, C, Moran, J, and Ramirez-Campillo, R. Kinematic and neuromuscular measures of intensity during plyometric jumps. J Strength Cond Res 34(12): 3395-3402, 2020-The aim of this study was to assess jumping performance and neuromuscular activity in lower limb muscles after drop jumps (DJs) from different drop heights (intensity) and during continuous jumping (fatigue), using markers such as reactive strength, jump height, mechanical power and surface electromyography (sEMG). The eccentric (EC) and concentric (CON) sEMG from the medial gastrocnemius (MG), biceps femoris (BF), and rectus (R) muscles were assessed during all tests. In a cross-sectional, randomized study, 11 volleyball players (age 24.4 ± 3.2 years) completed 20-90-cm (DJ20 to DJ90) DJs and a 60-second continuous jump test. A 1-way analysis of variance test was used for comparisons, with Sidak post hoc. The α level was <0.05. Reactive strength was greater for DJ40 compared with DJ90 (p ≤ 0.05; effect size (ES): 1.27). In addition, jump height was greater for DJ40 and DJ60 compared with DJ20 (p ≤ 0.05; ES: 1.26 and 1.27, respectively). No clear pattern of neuromuscular activity appeared during DJ20 to DJ90: some muscles showed greater, lower, or no change with increasing heights for both agonist and antagonist muscles, as well as for EC and CON activity. Mechanical power, but not reactive strength, was reduced in the 60-second jump test (p ≤ 0.05; ES: 3.46). No changes were observed in sEMG for any muscle during the EC phase nor for the R muscle during the CON phase of the 60-second jump test. However, for both MG and BF, CON sEMG was reduced during the 60-second jump test (p ≤ 0.05; ES: 5.10 and 4.61, respectively). In conclusion, jumping performance and neuromuscular markers are sensitive to DJ height (intensity), although not in a clear dose-response fashion. In addition, markers such as mechanical power and sEMG are, especially sensitive to the effects of continuous jumping (fatigue). Therefore, increasing the drop height during DJ does not ensure a greater training intensity and a combination of different drop heights may be required to elicit adaptations.

PubMed Disclaimer

References

    1. Andrade DC, Henriquez-Olguin C, Beltran AR, Ramirez MA, Labarca C, Cornejo M, Alvarez C, Ramirez-Campillo R. Effects of general, specific and combined warm-up on explosive muscular performance. Biol Sport 32: 123–128, 2015.
    1. Ankrum DR. Questions to ask when interpreting surface electromyography (SEMG) research. Proc Hum Factors Ergon Soc Annu Meet 44: 5–530–5–533, 2000.
    1. Barnes JL, Schilling BK, Falvo MJ, Weiss LW, Creasy AK, Fry AC. Relationship of jumping and agility performance in female volleyball athletes. J Strength Cond Res 21: 1192–1196, 2007.
    1. Bates NA, Ford KR, Myer GD, Hewett TE. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J Biomech 46: 1237–1241, 2013.
    1. Bobbert MF, Gerritsen KGM, Litjens MCA, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 28: 1402–1412, 1996.

Publication types

LinkOut - more resources