Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2017 Oct 24;61(11):e01054-17.
doi: 10.1128/AAC.01054-17. Print 2017 Nov.

Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Administered at 600, 900, and 1,200 Milligrams Daily in Patients with Pulmonary Tuberculosis

Collaborators, Affiliations
Randomized Controlled Trial

Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Administered at 600, 900, and 1,200 Milligrams Daily in Patients with Pulmonary Tuberculosis

R E Aarnoutse et al. Antimicrob Agents Chemother. .

Abstract

In a multiple-dose-ranging trial, we previously evaluated higher doses of rifampin in patients for 2 weeks. The objectives of the current study were to administer higher doses of rifampin for a longer period to compare the pharmacokinetics, safety/tolerability, and bacteriological activity of such regimens. In a double-blind, randomized, placebo-controlled, phase II clinical trial, 150 Tanzanian patients with tuberculosis (TB) were randomized to receive either 600 mg (approximately 10 mg/kg of body weight), 900 mg, or 1,200 mg rifampin combined with standard doses of isoniazid, pyrazinamide, and ethambutol administered daily for 2 months. Intensive pharmacokinetic sampling occurred in 63 patients after 6 weeks of treatment, and safety/tolerability was assessed. The bacteriological response was assessed by culture conversion in liquid and solid media. Geometric mean total exposures (area under the concentration-versus-time curve up to 24 h after the dose) were 24.6, 50.8, and 76.1 mg · h/liter in the 600-mg, 900-mg, and 1,200-mg groups, respectively, reflecting a nonlinear increase in exposure with the dose (P < 0.001). Grade 3 adverse events occurred in only 2 patients in the 600-mg arm, 4 patients in the 900-mg arm, and 5 patients in the 1,200-mg arm. No significant differences in the bacteriological response were observed. Higher daily doses of rifampin (900 and 1,200 mg) resulted in a more than proportional increase in rifampin exposure in plasma and were safe and well tolerated when combined with other first-line anti-TB drugs for 2 months, but they did not result in improved bacteriological responses in patients with pulmonary TB. These findings have warranted evaluation of even higher doses of rifampin in follow-up trials. (This study has been registered at ClinicalTrials.gov under identifier NCT00760149.).

Keywords: drug safety; pharmacokinetics; rifampin; tuberculosis.

PubMed Disclaimer

Figures

FIG 1
FIG 1
Plasma concentration-time profiles of rifampin in TB patients who received 600, 900, or 1,200 mg rifampin daily (means and standard deviations, recorded at 6 weeks of treatment).
FIG 2
FIG 2
Kaplan-Meier survival estimates by dose. (A) Time to culture conversion in mycobacterial growth indicator tube; (B) time to culture conversion on Lowenstein-Jensen medium.
FIG 3
FIG 3
Slope of log time to positivity (TTP) (left) and number of log CFU (right) over time.

References

    1. WHO. 2016. Global tuberculosis report 2016. WHO, Geneva, Switzerland: http://www.who.int/tb/publications/global_report/en/.
    1. Fox W, Ellard GA, Mitchison DA. 1999. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 3(Suppl 2):S231–S279. - PubMed
    1. van Ingen J, Aarnoutse RE, Donald PR, Diacon AH, Dawson R, Plemper van Balen G, Gillespie SH, Boeree MJ. 2011. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin Infect Dis 52:e194–e199. doi:10.1093/cid/cir184. - DOI - PubMed
    1. Gumbo T, Louie A, Deziel MR, Liu W, Parsons LM, Salfinger M, Drusano GL. 2007. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother 51:3781–3788. doi:10.1128/AAC.01533-06. - DOI - PMC - PubMed
    1. Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharat S, Shandil RK, Kantharaj E, Balasubramanian V. 2003. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother 47:2118–2124. doi:10.1128/AAC.47.7.2118-2124.2003. - DOI - PMC - PubMed

Publication types

MeSH terms

Associated data