Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017:16:85-116.
doi: 10.1007/978-3-319-55769-4_5.

Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters

Affiliations
Review

Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters

Sepehr Eskandari et al. Adv Neurobiol. 2017.

Abstract

The purpose of this review is to highlight recent evidence in support of a 3 Na+: 1 Cl-: 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na+, Cl-, and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na+, Cl-, and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na+, Cl-, and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na+, 2.0 ± 0.2 charges/Cl-, and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na+, 0-5 Cl-, and 1-5 GABA per transport cycle. Only the 3 Na+: 1 Cl-: 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na+: 1 Cl-: 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.

Keywords: Forward transport; GABA; Release; Reverse transport; SLC6; SLC6A1; SLC6A11; SLC6A12; SLC6A13; Stoichiometry; Transport; Transporter; Uptake.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources