Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2017 Mar/Apr;13(2):111-124.
doi: 10.5055/jom.2017.0375.

Clinical relevance of the pharmacokinetic characteristics of an abuse-deterrent, extended-release, injection-molded morphine tablet

Affiliations
Clinical Trial

Clinical relevance of the pharmacokinetic characteristics of an abuse-deterrent, extended-release, injection-molded morphine tablet

Jeffrey M Dayno et al. J Opioid Manag. 2017 Mar/Apr.

Abstract

Objective: To characterize the pharmacokinetics (PK) and in vitro alcohol dissolution characteristics of extended-release (ER), injection-molded (IM) morphine tablets with abuse-deterrent (AD) features (morphine-ADER-IMT).

Design: In vivo, in vitro, and in silico studies were conducted. A randomized, two-cohort study evaluated the bioequivalence of morphine-ADER-IMT (60 mg) to morphine ER (60 mg; MS Contin®; Purdue Pharma LP, Stamford, CT) and characterized the effect of food on the PK profile of morphine-ADER-IMT. A three-treatment, three-period crossover study assessed the bioequivalence of morphine-ADER-IMT (30 and 2 ȕ 15 mg) to morphine ER (30 mg). Bioequivalence studies were performed in healthy male and female subjects (18-55 y of age) in the presence of naltrexone blockade. PK modeling was performed to assess steady-state bioequivalence for morphine-ADER-IMT 60 mg compared with morphine ER 60 mg. In vitro alcohol dissolution studies were performed with morphine-ADER-IMT (15 and 60 mg).

Results: Fifty-nine and 56 subjects completed the 60-mg bioequivalence/food effect study and 30-mg bioequivalence study, respectively. Bioequivalence of morphine-ADER-IMT 60, 30, and 2 ȕ 15 mg and morphine ER was demonstrated to comparable doses of morphine ER. No clinically significant food effect was observed with morphine-ADER-IMT. Treatment-emergent adverse events were similar among all treatment groups. Steady-state modeling indicated bioequivalence between morphine-ADER-IMT 60 mg and morphine ER 60 mg when administered every 8 or 12 hours. No evidence of alcohol dose-dumping was observed with morphine-ADER-IMT.

Conclusions: Morphine-ADER-IMT, an ER morphine formulation with robust AD features, has a clinical PK profile that is well suited for patients with chronic pain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources