Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2017 Aug 22;13(1):267.
doi: 10.1186/s12917-017-1192-3.

Tick-borne encephalitis in a naturally infected sheep

Affiliations
Case Reports

Tick-borne encephalitis in a naturally infected sheep

Brigitte Böhm et al. BMC Vet Res. .

Abstract

Background: Tick-borne encephalitis (TBE) is the most important viral tick borne zoonosis in Europe. In Germany, about 250 human cases are registered annually, with the highest incidence reported in the last years coming from the federal states Bavaria and Baden-Wuerttemberg. In veterinary medicine, only sporadic cases in wild and domestic animals have been reported; however, a high number of wild and domestic animals have tested positive for the tick-borne encephalitis virus (TBEV) antibody.

Case presentation: In May 2015, a five-month-old lamb from a farm with 15 Merino Land sheep and offspring in Nersingen/Bavaria, a TBEV risk area, showed impaired general health with pyrexia and acute neurological signs. The sheep suffered from ataxia, torticollis, tremor, nystagmus, salivation and finally somnolence with inappetence and recumbency. After euthanasia, pathological, histopathological, immunohistochemical, bacteriological, parasitological and virological analyses were performed. Additionally, blood samples from the remaining, healthy sheep in the herd were taken for detection of TBEV antibody titres. At necropsy and accompanying parasitology, the sheep showed a moderate to severe infection with Trichostrongylids, Moniezia and Eimeria species. Histopathology revealed mild to moderate necrotising, lymphohistiocytic and granulocytic meningoencephalitis with gliosis and neuronophagia. Immunohistochemistry for TBEV was negative. RNA of a TBEV strain, closely related to the Kumlinge A52 strain, was detected in the brain by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and subsequent PCR product sequencing. A phylogenetic analysis revealed a close relationship to the TBEV of central Europe. TBEV was cultured from brain tissue. Serologically, one of blood samples from the other sheep in the herd was positive for TBEV in an enzyme-linked immunosorbent assay (ELISA) and in a serum neutralisation test (SNT), and one was borderline in an ELISA.

Conclusion: To the authors' knowledge this is the first report of a natural TBEV infection in a sheep in Europe with clinical manifestation, which describes the clinical presentation and the histopathology of TBEV infection.

Keywords: ELISA; Histopathology; Ixodes ricinus; RT-qPCR; TBEV; Tick-borne encephalitis virus.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors confirm that no competing financial interests exist.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Brain, thalamus, severe lymphohistiocytic perivascular infiltration of neuroparenchyma and gliosis, HE, 100 x. b Brain, thalamus, necrosis of neurons surrounded by neuronophagic nodules, HE, 200 x. c Brain, cerebral cortex, moderate lymphohistiocytic and neutrophil granulocytic perivascular infiltration of neuroparenchyma, HE, 400 x. d Leptomeninx, moderate, diffuse, lymphohistiocytic and neutrophil granulocytic infiltration, HE, 200 x
Fig. 2
Fig. 2
Phylogenetic analysis was performed with whole genome sequences and showed that TBEV Leila_BH95–15 belongs to the Eurasian TBEV clade. The optimal tree with the sum of branch length = 1.19366931 is shown

References

    1. Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia – an overview. Ticks Tick Borne Dis. 2011;2:2–15. doi: 10.1016/j.ttbdis.2010.10.007. - DOI - PubMed
    1. Holzmann H, Aberle SW, Stiasny K, Werner P, Mischak A, Zainer B, Netzer M, Koppi S, Bechter E, Heinz FX. Tick-borne encephalitis from eating goatcheese in a mountain region of Austria. Emerg Infect Dis. 2009;15:1671–1673. doi: 10.3201/eid1510.090743. - DOI - PMC - PubMed
    1. Balogh Z, Ferenczi E, Szeles K, Stefanoff P, Gut W, Szomor K, Takacs M, Berencsi G. Tick-borne encephalitis outbreak in Hungary due to consumption of raw goat milk. J Virol Methods. 2010;163:481–485. doi: 10.1016/j.jviromet.2009.10.003. - DOI - PubMed
    1. Robert Koch-Institute FSME: Risikogebiete in Deutschland. Epid Bull. 2007;15:129–135.
    1. Robert Koch-Institute FSME: Risikogebiete in Deutschland. Epid Bull. 2016;2:151–162.

Publication types

MeSH terms

Substances

LinkOut - more resources