An Update on Statistical Boosting in Biomedicine
- PMID: 28831290
- PMCID: PMC5558647
- DOI: 10.1155/2017/6083072
An Update on Statistical Boosting in Biomedicine
Abstract
Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.
Figures
Similar articles
-
Extending statistical boosting. An overview of recent methodological developments.Methods Inf Med. 2014;53(6):428-35. doi: 10.3414/ME13-01-0123. Epub 2014 Aug 12. Methods Inf Med. 2014. PMID: 25112429 Review.
-
The evolution of boosting algorithms. From machine learning to statistical modelling.Methods Inf Med. 2014;53(6):419-27. doi: 10.3414/ME13-01-0122. Epub 2014 Aug 12. Methods Inf Med. 2014. PMID: 25112367
-
Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction.BMC Bioinformatics. 2021 Sep 16;22(1):441. doi: 10.1186/s12859-021-04340-z. BMC Bioinformatics. 2021. PMID: 34530737 Free PMC article.
-
Boosting - an unusual yet attractive optimiser.Methods Inf Med. 2014;53(6):417-8. doi: 10.3414/ME13-10-0123. Methods Inf Med. 2014. PMID: 25450534
-
The PLOS ONE collection on machine learning in health and biomedicine: Towards open code and open data.PLoS One. 2019 Jan 15;14(1):e0210232. doi: 10.1371/journal.pone.0210232. eCollection 2019. PLoS One. 2019. PMID: 30645625 Free PMC article. Review.
Cited by
-
A boosting first-hitting-time model for survival analysis in high-dimensional settings.Lifetime Data Anal. 2023 Apr;29(2):420-440. doi: 10.1007/s10985-022-09553-9. Epub 2022 Apr 27. Lifetime Data Anal. 2023. PMID: 35476164 Free PMC article.
-
Feature Selection Method Based on Partial Least Squares and Analysis of Traditional Chinese Medicine Data.Comput Math Methods Med. 2019 Jul 1;2019:9580126. doi: 10.1155/2019/9580126. eCollection 2019. Comput Math Methods Med. 2019. PMID: 31354860 Free PMC article.
-
A Multi-Institutional Collaboration to Understand Neoplasia, Treatment and Survival of Snakes.Animals (Basel). 2022 Jan 21;12(3):258. doi: 10.3390/ani12030258. Animals (Basel). 2022. PMID: 35158582 Free PMC article.
-
Predicting Physician Consultations for Low Back Pain Using Claims Data and Population-Based Cohort Data-An Interpretable Machine Learning Approach.Int J Environ Res Public Health. 2021 Nov 16;18(22):12013. doi: 10.3390/ijerph182212013. Int J Environ Res Public Health. 2021. PMID: 34831773 Free PMC article.
-
Retrospective Study of the Prevalence, Histopathology, Therapy, and Survival Time of Neoplastic Disease in Fish.Animals (Basel). 2024 Jan 31;14(3):464. doi: 10.3390/ani14030464. Animals (Basel). 2024. PMID: 38338107 Free PMC article.
References
-
- Bühlmann P., Hothorn T. Rejoinder: boosting algorithms: regularization, prediction and model fitting. Statistical Science. 2007;22(4):516–522. doi: 10.1214/07-STS242REJ. - DOI
-
- Hofner B., Hothorn T., Kneib T., Schmid M. A framework for unbiased model selection based on boosting. Journal of Computational and Graphical Statistics. 2011;20(4):956–971. doi: 10.1198/jcgs.2011.09220. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources