Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 1;2(10):1069-1078.
doi: 10.1001/jamacardio.2017.2762.

Cost-effectiveness of Evolocumab Therapy for Reducing Cardiovascular Events in Patients With Atherosclerotic Cardiovascular Disease

Affiliations

Cost-effectiveness of Evolocumab Therapy for Reducing Cardiovascular Events in Patients With Atherosclerotic Cardiovascular Disease

Gregg C Fonarow et al. JAMA Cardiol. .

Erratum in

  • Error in Figure.
    [No authors listed] [No authors listed] JAMA Cardiol. 2017 Oct 1;2(10):1170. doi: 10.1001/jamacardio.2017.3817. JAMA Cardiol. 2017. PMID: 29049503 Free PMC article. No abstract available.

Abstract

Importance: The proprotein convertase subtilisin/kexin type 9 inhibitor evolocumab has been demonstrated to reduce the composite of myocardial infarction, stroke, or cardiovascular death in patients with established atherosclerotic cardiovascular disease. To our knowledge, long-term cost-effectiveness of this therapy has not been evaluated using clinical trial efficacy data.

Objective: To evaluate the cost-effectiveness of evolocumab in patients with atherosclerotic cardiovascular disease when added to standard background therapy.

Design, setting, and participants: A Markov cohort state-transition model was used, integrating US population-specific demographics, risk factors, background therapy, and event rates along with trial-based event risk reduction. Costs, including price of drug, utilities, and transitional probabilities, were included from published sources.

Exposures: Addition of evolocumab to standard background therapy including statins.

Main outcomes and measures: Cardiovascular events including myocardial infarction, ischemic stroke and cardiovascular death, quality-adjusted life-year (QALY), incremental cost-effectiveness ratio (ICER), and net value-based price.

Results: In the base case, using US clinical practice patients with atherosclerotic cardiovascular disease with low-density lipoprotein cholesterol levels of at least 70 mg/dL (to convert to millimoles per liter, multiply by 0.0259) and an annual events rate of 6.4 per 100 patient-years, evolocumab was associated with increased cost and improved QALY: incremental cost, $105 398; incremental QALY, 0.39, with an ICER of $268 637 per QALY gained ($165 689 with discounted price of $10 311 based on mean rebate of 29% for branded pharmaceuticals). Sensitivity and scenario analyses demonstrated ICERs ranging from $100 193 to $488 642 per QALY, with ICER of $413 579 per QALY for trial patient characteristics and event rate of 4.2 per 100 patient-years ($270 192 with discounted price of $10 311) and $483 800 if no cardiovascular mortality reduction emerges. Evolocumab treatment exceeded $150 000 per QALY in most scenarios but would meet this threshold at an annual net price of $9669 ($6780 for the trial participants) or with the discounted net price of $10 311 in patients with low-density lipoprotein cholesterol levels of at least 80 mg/dL.

Conclusions and relevance: At its current list price of $14 523, the addition of evolocumab to standard background therapy in patients with atherosclerotic cardiovascular disease exceeds generally accepted cost-effectiveness thresholds. To achieve an ICER of $150 000 per QALY, the annual net price would need to be substantially lower ($9669 for US clinical practice and $6780 for trial participants), or a higher-risk population would need to be treated.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Fonarow reports consulting for Amgen, Janssen, and Novartis. Dr Keech reports grants and personal fees from Abbott, Amgen, AstraZeneca, and Pfizer; grants and personal fees from Mylan and Sanofi; and is the recipient of a National Health and Medical Research Council of Australia Senior Principal Research Fellowship award. Dr Pedersen reports research grant support through his institution from Amgen and honoraria from Amgen, Boehringer Ingelheim, the Medicines Company, Merck, and Sanofi. Dr Giugliano reports research grant support through Brigham and Women’s Hospital from Amgen, Daiichi-Sankyo, and Merck, and honoraria from Amgen, Angel Med, Beckman-Coulter, Boehringer-Ingelheim, Bristol-MyersSquibb, CVS Caremark, Daiichi-Sankyo, GlaxoSmithKline, Janssen, Lexicon, Merck, Portola, Pfizer, Regeneron, Sanofi, St Jude, and Stealth Peptides. Dr Sever reports research grant support through Imperial College from Amgen and is a recipient of an NIHR Senior Investigator Award and receives support from the Biomedical Research Centre Award to Imperial College Healthcare National Health Services Trust. Drs Lindgren and van Hout report consulting for Amgen. Dr Villa is an employee of Amgen (Europe), and Drs Qian and Somaratne are employees and stockholders of Amgen Inc. Dr Sabatine reports research grant support through Brigham and Women’s Hospital from Abbott Laboratories, Amgen, AstraZeneca, Critical Diagnostics, Daiichi-Sankyo, Eisai, Genzyme, Gilead, GlaxoSmithKline, Intarcia, Janssen Research Development, MedImmune, Merck, Novartis, Poxel, Roche Diagnostics, and Takeda and honoraria from Alnylam, Amgen, AstraZeneca, Cubist, CVS Caremark, Esperion, Intarcia, Ionis, Janssen Research and Development, Medicines Company, MedImmune, Merck, MyoKardia, and Zeus Scientific. No other disclosures were reported.

Figures

Figure.
Figure.. Incremental Cost-effectiveness Ratios and Value-Based Pricing by Annual Cardiovascular Event Rates
A, Incremental cost-effectiveness ratio (ICER) values for a range of annual cardiovascular event rates per 100 patient-years using full list price ($14 523 per year) and discounted net price ($10 311 per year) for evolocumab for the US clinical practice population. Annual cardiovascular event rate per 100 patient-years integrates multiple events into the rates (patients may experience more than 1 event). B, ICER values for a range of annual cardiovascular event rates per 100 patient-years using full list price ($14 523 per year) and discounted net price ($10 311 per year) for evolocumab for the FOURIER trial population. C, Value-based prices (VBPs) at range of annual cardiovascular event rates per 100 patient-years for the US clinical practice population and for the FOURIER trial participants.

Comment in

References

    1. Benjamin EJ, Blaha MJ, Chiuve SE, et al. ; American Heart Association Statistics Committee and Stroke Statistics Subcommittee . Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146-e603. - PMC - PubMed
    1. Davis KL, Meyers J, Zhao Z, McCollam PL, Murakami M. High-risk atherosclerotic cardiovascular disease in a real-world employed Japanese population: prevalence, cardiovascular event rates, and costs. J Atheroscler Thromb. 2015;22(12):1287-1304. - PubMed
    1. Henk HJ, Paoli CJ, Gandra SR. A retrospective study to examine healthcare costs related to cardiovascular events in individuals with hyperlipidemia. Adv Ther. 2015;32(11):1104-1116. - PMC - PubMed
    1. Jernberg T, Hasvold P, Henriksson M, Hjelm H, Thuresson M, Janzon M. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J. 2015;36(19):1163-1170. - PubMed
    1. Punekar RS, Fox KM, Richhariya A, et al. . Burden of first and recurrent cardiovascular events among patients with hyperlipidemia. Clin Cardiol. 2015;38(8):483-491. - PMC - PubMed

Publication types