Assessment of the influence of direct tobacco smoke on infection and active TB management
- PMID: 28837570
- PMCID: PMC5570217
- DOI: 10.1371/journal.pone.0182998
Assessment of the influence of direct tobacco smoke on infection and active TB management
Abstract
Background: Smoking is a risk factor for tuberculosis (TB) infection and disease progression. Tobacco smoking increases susceptibility to TB in a variety of ways, one of which is due to a reduction of the IFN-γ response. Consequently, an impaired immune response could affect performance of IFN-γ Release Assays (IGRAs).
Objective: In the present study, we assess the impact of direct tobacco smoking on radiological manifestations, sputum conversion and immune response to Mycobacterium tuberculosis, analyzing IFN-γ secretion by IGRAs.
Methods: A total of 525 participants were studied: (i) 175 active pulmonary TB patients and (ii) 350 individuals coming from contact tracing studies, 41 of whom were secondary TB cases. Clinical, radiological and microbiological data were collected. T-SPOT.TB and QFN-G-IT were processed according manufacturer's instructions.
Results: In smoking patients with active TB, QFN-G-IT (34.4%) and T-SPOT.TB (19.5%) had high frequencies of negative results. In addition, by means of an unconditional logistic regression, smoking was a main factor associated with IGRAs' false-negative results (aOR: 3.35; 95%CI:1.47-7.61; p<0.05). Smoking patients with active TB presented a high probability of having cavitary lesions (aOR: 1.88; 95%CI:1.02-3.46;p<0.05). Mean culture negativization (months) ± standard deviation (SD) was higher in smokers than in non-smokers (2.47±1.3 versus 1.69±1.4). Latent TB infection (LTBI) was favored in smoking contacts, being a risk factor associated with infection (aOR: 11.57; 95%CI:5.97-22.41; p<0.00005). The IFN-γ response was significantly higher in non-smokers than in smokers. Smoking quantity and IFN-γ response analyzed by IGRAs were dose-dependent related.
Conclusions: Smoking had a negative effect on radiological manifestations, delaying time of sputum conversion. Our data establish a link between tobacco smoking and TB due to a weakened IFN-γ response caused by direct tobacco smoke.
Conflict of interest statement
Figures
References
-
- World Health Organization. WHO report on the global tobacco epidemic (ISBN9789240694613). 2015.
-
- World Health Organization. Global tuberculosis report (WHO/HTM/TB/2016.13). 2016.
-
- World Health Organization, International Union Against Tuberculosis and Lung Diseases. A WHO/The union monograph on tuberculosis and tobacco control: joining efforts to control two related global epidemics (WHO/HTM /TB/2007.390) 2015.
-
- Slama K, Chiang CY, Enarson DA, Hassmiller K, Fanning A, Gupta P, et al. Tobacco and tuberculosis: a qualitative systematic review and meta-analysis. Int J Tuberc Lung Dis. 2007;11(10):1049–61. . - PubMed
-
- van Zyl Smit RN, Pai M, Yew WW, Leung CC, Zumla A, Bateman ED, et al. Global lung health: the colliding epidemics of tuberculosis, tobacco smoking, HIV and COPD. Eur Respir J. 2010;35(1):27–33. doi: 10.1183/09031936.00072909 . - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
