Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 20;139(37):12994-13005.
doi: 10.1021/jacs.7b04973. Epub 2017 Sep 7.

Mechanism and Origins of Ligand-Controlled Stereoselectivity of Ni-Catalyzed Suzuki-Miyaura Coupling with Benzylic Esters: A Computational Study

Affiliations

Mechanism and Origins of Ligand-Controlled Stereoselectivity of Ni-Catalyzed Suzuki-Miyaura Coupling with Benzylic Esters: A Computational Study

Shuo-Qing Zhang et al. J Am Chem Soc. .

Abstract

Nickel catalysts have shown unique ligand control of stereoselectivity in the Suzuki-Miyaura cross-coupling of boronates with benzylic pivalates and derivatives involving C(sp3)-O cleavage. The SIMes ligand (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) produces the stereochemically inverted C-C coupling product, while the tricyclohexylphosphine (PCy3) ligand delivers the retained stereochemistry. We have explored the mechanism and origins of the ligand-controlled stereoselectivity with density functional theory (DFT) calculations. The oxidative addition determines the stereoselectivity with two competing transition states, an SN2 back-side attack type transition state that inverts the benzylic stereogenic center and a concerted oxidative addition through a cyclic transition state, which provides stereoretention. The key difference between the two transition states is the substrate-nickel-ligand angle distortion; the ligand controls the selectivity by differentiating the ease of this angle distortion. For the PCy3 ligand, the nickel-ligand interaction involves mainly σ-donation, which does not require a significant energy penalty for the angle distortion. The facile angle distortion with PCy3 ligand allows the favorable cyclic oxidative addition transition state, leading to the stereoretention. For the SIMes ligand, the extra d-p back-donation from nickel to the coordinating carbene increases the rigidity of the nickel-ligand bond, and the corresponding angle distortion is more difficult. This makes the concerted cyclic oxidative addition unfavorable with SIMes ligand, and the back-side SN2-type oxidative addition delivers the stereoinversion.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
DFT-computed Gibbs free energy changes of the [Ni(PCy3)]-catalyzed Suzuki-Miyaura coupling with benzylic ester 3 leading to stereoretention product.
Figure 2
Figure 2
DFT-optimized structures of selected intermediates and transition states for the [Ni(PCy3)]-catalyzed Suzuki-Miyaura coupling with benzylic ester 3 leading to stereoretention product. All the C–H bonds are hidden for simplicity, except the benzylic stereogenic center.
Figure 3
Figure 3
DFT-computed Gibbs free energies changes of the [Ni(SIMes)]-catalyzed Suzuki-Miyaura cross-coupling with benzylic ester 3 leading to stereoinversion product.
Figure 4
Figure 4
DFT-optimized structures of selected intermediates and transition states for the [Ni(SIMes)]-catalyzed Suzuki-Miyaura coupling with benzylic ester 3 leading to stereoinversion product. All the C–H bonds are hidden for simplicity, except the benzylic stereogenic center.
Figure 5
Figure 5
DFT-computed Gibbs free energies changes of the invertive and retentive Ni-mediated oxidative addition of benzylic ester 3 with PCy3 and SIMes ligands.
Figure 6
Figure 6
Energy changes upon replacing groups in the pre-inversion intermediates and pre-retention intermediates with smaller groups to test their roles in determining the stereoselectivities. All H atoms are hidden for simplicity except the ones that are used to degrade the substrates.
Figure 7
Figure 7
Major interactions between ligand or pivalate and Ni in [LNi(pivalate)] complexes, calculated with NBO calculation at M06/def2-SVP//B3LYP/LANL2DZ-6-31G(d). The isovalue is 0.05 and all H atoms are hidden for simplicity. The green and blue surfaces represent two opposite phases of the NBOs.
Figure 8
Figure 8
Relative gas phase electronic energies of [LNi(naphthalene)] complexes with different substrate-nickel-ligand angles. θ is the bending angle of ligand from the optimized position to the bent position.
Figure 9
Figure 9
Relative gas phase electronic energies of [LNi(NH3)] complexes with different substrate-nickel-ligand angles. θ is the bending angle, defined in Figure 8.
Figure 10
Figure 10
Optimized structures and relative free energies of the SN2-type and cyclic C–O cleavage transition states with 35.
Scheme 1
Scheme 1
Ligand-controlled stereoselectivity in Ni-catalyzed Suzuki-Miyaura coupling reactions with benzylic esters and derivatives.
Scheme 2
Scheme 2
Proposed mechanisms of stereospecific Ni-catalyzed Suzuki–Miyaura coupling reactions with benzylic ester and derivatives.
Scheme 3
Scheme 3
Model reactions used for computation..
Scheme 4
Scheme 4
Analysis of the contributions of the stereoselectivity with PCy3 ligand based on Curtin-Hammett principle.

References

    1. For reviews, see: Yu D-G, Li B-J, Shi Z-J. Acc. Chem. Res. 2010;43:1486.Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A-M, Garg NK, Percec V. Chem. Rev. 2011;111:1346.Han F-S. Chem. Soc. Rev. 2013;42:5270.Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013;2013:19.Mesganaw T, Garg NK. Org. Process Res. Dev. 2013;17:29.Tasker SZ, Standley EA, Jamison TF. Nature. 2014;509:299.Tobisu M, Chatani N. Top. Curr. Chem. 2016;374:41.Zeng H, Qiu Z, Domínguez-Huerta A, Hearne Z, Chen Z, Li C-J. ACS Catal. 2017;7:510.

    1. Quasdorf KW, Tian X, Garg NK. J. Am. Chem. Soc. 2008;130:14422. - PubMed
    2. Guan B-T, Wang Y, Li B-J, Yu D-G, Shi Z-J. J. Am. Chem. Soc. 2008;130:14468. - PubMed
    1. Shimasaki T, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2010;49:2929. - PubMed
    2. Ehle AR, Zhou Q, Watson MP. Org. Lett. 2012;14:1202. - PubMed
    3. Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012;134:169. - PubMed
    4. Wang J, Ferguson DM, Kalyani D. Tetrahedron. 2013;69:5780.
    5. Takise R, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2014;53:6791. - PubMed
    6. Zarate C, Martin R. J. Am. Chem. Soc. 2014;136:2236. - PubMed
    7. Koch E, Takise R, Studer A, Yamaguchi J, Itami K. Chem. Commun. 2015;51:855. - PubMed
    8. Correa A, Leon T, Martin R. J. Am. Chem. Soc. 2014;136:1062. - PubMed
    9. Kinuta H, Hasegawa J, Tobisu M, Chatani N. Chem. Lett. 2015;44:366.
    10. Yang J, Chen T, Han L-B. J. Am. Chem. Soc. 2015;137:1782. - PubMed
    11. Cornella J, Jackson EP, Martin R. Angew. Chem. Int. Ed. 2015;54:4075. - PubMed
    12. Muto K, Hatakeyama T, Yamaguchi J, Itami K. Chem. Sci. 2015;6:6792. - PMC - PubMed
    13. Yang J, Xiao J, Chen T, Han L-BJ. J. Org. Chem. 2016;81:3911. - PubMed
    14. Guo L, Hsiao C-C, Yue H, Liu X, Rueping M. ACS Catal. 2016;6:4438.
    15. Gu Y, Martin R. Angew. Chem. Int. Ed. 2017;56:3187. - PubMed
    16. Yue H, Guo L, Liao H-H, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017;56:4282. - PubMed
    17. Yue H, Guo L, Liu X, Rueping M. Org. Lett. 2017;19:1788. - PubMed
    1. Sengupta S, Leite M, Raslan DS, Quesnelle C, Snieckus V. J. Org. Chem. 1992;57:4066.
    2. Dallaire C, Kolber I, Gingras M. Org. Synth. 2002;78:42.
    3. Quasdorf KW, Riener M, Petrova KV, Garg NK. J. Am. Chem. Soc. 2009;131:17748. - PMC - PubMed
    4. Antoft-Finch A, Blackburn T, Snieckus V. J. Am. Chem. Soc. 2009;131:17750. - PubMed
    5. Xi L, Li B-J, Wu Z-H, Lu X-Y, Guan B-T, Wang B-Q, Zhao K-Q, Shi Z-J. Org. Lett. 2010;12:884. - PubMed
    6. Quasdorf KW, Antoft-Finch A, Liu P, Silberstein AL, Komaromi A, Blackburn T, Ramgren SD, Houk KN, Snieckus V, Garg NK. J. Am. Chem. Soc. 2011;133:6352. - PMC - PubMed
    7. Mesganaw T, Silberstein AL, Ramgren SD, Nathel NFF, Hong X, Liu P, Garg NK. Chem. Sci. 2011;2:1766. - PMC - PubMed
    8. Mesganaw T, Nathel NFF, Garg NK. Org. Lett. 2012;14:2918. - PubMed
    9. Hie L, Ramgren SD, Mesganaw T, Garg NK. Org. Lett. 2012;14:4182. - PMC - PubMed
    10. Ramgren SD, Hie L, Ye Y-X, Garg NK. Org. Lett. 2013;15:3950. - PMC - PubMed
    11. Ohtsuki A, Yanagisawa K, Furukawa T, Tobisu M, Chatani N. J. Org. Chem. 2016;81:9409. - PubMed
    12. Takise R, Itami K, Yamaguchi J. Org. Lett. 2016;18:4428. - PubMed
    13. Wang Y, Wu SB, Shi WJ, Shi ZJ. Org. Lett. 2016;18:2548. - PubMed
    14. Shi W-J, Zhao H-W, Wang Y, Cao Z-C, Zhang L-S, Yu D-G, Shi Z-J. Adv. Synth. Catal. 2016;358:2410.
    1. Macklin TK, Snieckus V. Org. Lett. 2005;7:2519. - PubMed
    2. Wehn PM, Du Bois J. Org. Lett. 2005;7:4685. - PubMed
    3. Ramgren SD, Silberstein AL, Yang Y, Garg NK. Angew. Chem. Int. Ed. 2011;50:2171. - PMC - PubMed
    4. Ackermann L, Sandmann R, Song W. Org. Lett. 2011;13:1784. - PubMed
    5. Chen G-J, Han F-S. Eur. J. Org. Chem. 2012;2012:3575.
    6. Leowanawat P, Zhang N, Safi M, Hoffman DJ, Fryberger MC, George A, Percec V. J. Org. Chem. 2012;77:2885. - PubMed
    7. Ke H, Chen X, Zou G. J. Org. Chem. 2014;79:7132. - PubMed
    8. Park NH, Teverovskiy G, Buchwald SL. Org. Lett. 2014;16:220. - PMC - PubMed
    9. Mohadjer Beromi M, Nova A, Balcells D, Brasacchio AM, Brudvig GW, Guard LM, Hazari N, Vinyard DJ. J. Am. Chem. Soc. 2017;139:922. - PMC - PubMed

Publication types