Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Apr 28;410(1):116-20.
doi: 10.1016/s0006-8993(87)80030-6.

Increase in the stimulation-induced overflow of glutamate by fluoroacetate, a selective inhibitor of the glial tricarboxylic cycle

Increase in the stimulation-induced overflow of glutamate by fluoroacetate, a selective inhibitor of the glial tricarboxylic cycle

J C Szerb et al. Brain Res. .

Abstract

Fluoroacetate is known to be taken up selectively by glia, where after forming fluorocitrate, it inhibits the tricarboxylic acid cycle. Since uptake into glia has a major role in the inactivation of synaptically released glutamate, the effect of fluoroacetate on the overflow of glutamate evoked by electrical field stimulation in slices of rat hippocampus was investigated. In agreement with previous reports, 1 mM fluoroacetate reduced the release and content of glutamine, but increased only slightly the overflow of glutamate induced by stimulation. If, however, 0.5 mM glutamine was added to the superfusion fluid, fluoroacetate nearly tripled the overflow of glutamate evoked by electrical field stimulation. The large glutamate overflow due to field stimulation in the presence of fluoroacetate was fully Ca2+ -dependent. Results confirm the major role of glia in the inactivation of glutamate. The absence of such an uptake may contribute to the in vivo convulsive effect of fluoroacetate.

PubMed Disclaimer

Publication types

LinkOut - more resources