Synthesis of Highly Oxygenated Carbocycles by Stereoselective Coupling of Alkynes to 1,3- and 1,4-Dicarbonyl Systems
- PMID: 28844136
- PMCID: PMC5600187
- DOI: 10.1021/jacs.7b06286
Synthesis of Highly Oxygenated Carbocycles by Stereoselective Coupling of Alkynes to 1,3- and 1,4-Dicarbonyl Systems
Abstract
Densely substituted and highly oxygenated carbocycles are challenging targets for synthesis. In particular, those possessing numerous contiguous, fully substituted carbon atoms (i.e., tertiary alcohols and quaternary centers) are often not accessible in a direct fashion, necessitating the strategic decoupling of ring-formation from the establishment of functionality about the system. Here, we describe an approach to the construction of highly oxygenated mono-, di-, and polycyclic carbocycles from the reaction of disubstituted alkynes with β- or γ-dicarbonyl systems. These processes embrace a variant of metallacycle-mediated annulation chemistry where initial alkyne-carbonyl coupling is followed by a second, now intramolecular, stereoselective C-C bond-forming event. In addition to revealing the basic reactivity pattern in intermolecular settings, we demonstrate that this class of reactivity is quite powerful in a fully intramolecular context and, when terminated by a stereoselective oxidation process, can be used to generate polycyclic systems containing a fully substituted and highly oxygenated five-membered ring.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Wender P. A. Nat. Prod. Rep. 2014, 31, 433–440. 10.1039/C4NP00013G. - DOI - PubMed
- Ishihara Y.; Baran P. S. Synlett 2010, 2010, 1733–1745. 10.1055/s-0030-1258123. - DOI
- Burns N. Z.; Baran P. S.; Hoffmann R. W. Angew. Chem., Int. Ed. 2009, 48, 2854–2867. 10.1002/anie.200806086. - DOI - PubMed
- Chen K.; Baran P. S. Nature 2009, 459, 824–828. 10.1038/nature08043. - DOI - PubMed
-
-
For recent reviews, see:
- Hartwig J. F. J. Am. Chem. Soc. 2016, 138, 2–24. 10.1021/jacs.5b08707. - DOI - PMC - PubMed
- Qiu Y.; Gao S. Nat. Prod. Rep. 2016, 33, 562–581. 10.1039/C5NP00122F. - DOI - PubMed
- Nakamura A.; Nakada M. Synthesis 2013, 45, 1421–1451. 10.1055/s-0033-1338426. - DOI
- Chen D. Y.-K.; Youn S. W. Chem. - Eur. J. 2012, 18, 9452–9474. 10.1002/chem.201201329. - DOI - PubMed
- Gutekunst W. R.; Baran P. S. Chem. Soc. Rev. 2011, 40, 1976–1991. 10.1039/c0cs00182a. - DOI - PubMed
-
-
- Akasaka H.; Shione Y. Helv. Chim. Acta 2005, 88, 2944–2950. 10.1002/hlca.200590237. - DOI
- Chai X.-Y.; Bai C.-C.; Shi H.-M.; Xu Z.-R.; Ren H.-Y.; Li F.-F.; Lu Y.-N.; Song Y.-L.; Tu P.-F. Tetrahedron 2008, 64, 5743–5747. 10.1016/j.tet.2008.04.022. - DOI
- Kelly R. B.; Whittingham D. J.; Wiesner K. Can. J. Chem. 1951, 29, 905–910. 10.1139/v51-105. - DOI
- Srivastava S. N.; Przybylska M. Can. J. Chem. 1968, 46, 795–797. 10.1139/v68-133. - DOI
-
For an impressive synthetic route to ryanodol and ryanodine, see:
- Chuang K. V.; Xu C.; Reisman S. E. Science 2016, 353, 912–915. 10.1126/science.aag1028. - DOI - PMC - PubMed
- Xu C.; Han A.; Virgil S. C.; Reisman S. E. ACS Cent. Sci. 2017, 3, 278–282. 10.1021/acscentsci.6b00361. - DOI - PMC - PubMed
-
-
For an example of a Ti–ethylene complex reacting with an aldehyde, see:
- Cohen S. A.; Bercaw J. E. Organometallics 1985, 4, 1006–1014. 10.1021/om00125a008. - DOI
-
For an example of regioselective coupling of a Ti–alkyne complex to an aldehyde, see:
- Harada K.; Urabe H.; Sato F. Tetrahedron Lett. 1995, 36, 3203–3206. 10.1016/0040-4039(95)00513-C. - DOI
-
-
-
For a related reaction design that does not deliver stereodefined products, see the following that describe Nb- and Ta-mediated entries to substituted naphthols:
- Hartung J. B.; Pedersen S. F. J. Am. Chem. Soc. 1989, 111, 5468–5469. 10.1021/ja00196a064. - DOI
- Kataoka Y.; Miyai J.; Tezuka M.; Takai K.; Oshima K.; Utimoto K. Tetrahedron Lett. 1990, 31, 369–372. 10.1016/S0040-4039(00)94557-X. - DOI
-
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
