Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019;19(3):250-269.
doi: 10.2174/1389557517666170828121018.

Design, Synthesis and Biological Evaluation of Spiro Cyclohexane-1,2- Quinazoline Derivatives as Potent Dipeptidyl Peptidase IV Inhibitors

Affiliations

Design, Synthesis and Biological Evaluation of Spiro Cyclohexane-1,2- Quinazoline Derivatives as Potent Dipeptidyl Peptidase IV Inhibitors

Yasmin M Syam et al. Mini Rev Med Chem. 2019.

Abstract

Objective: Inhibition of dipeptidyl peptidase IV (DPP-4) is currently one of the most valuable and potential chemotherapeutic regimes for the medication of Type 2 Diabetes Mellitus (T2DM).

Method: Based on linagliptin, this study discusses the design, synthesis and biological evaluation of spiro cyclohexane-1,2'-quinazoline scaffold hybridized with various heterocyclic ring systems through different atomic spacers as a highly potent DPP-4 inhibitors. DPP-4 enzyme assay represented that most of the target compounds are 102-103 folds more active than the reference drug linagliptin (IC50: 0.0005-0.0089 nM vs 0.77 nM; respectively). Moreover, in vivo oral hypoglycemic activity assay revealed that most of the tested candidates were more potent than the reference drug, sitagliptin, producing rapid onset with long duration of activity that extends to 24 h. Interestingly, the derivatives 11, 16, 18a and 23 showed evidence of mild cytochrome P450 3A4 (CYP3A4) inhibition (IC50; > 210 µM) and their acute toxicity (LD50) was more than 1.9 gm/kg. Molecular simulation study of the new quinazoline derivatives explained the obtained biological results.

Conclusion: Finally, we conclude that our target compounds could be highly beneficial for diabetic patients in the clinic.

Keywords: Antidiabetic agents; DPP-4 inhibition; Gewald reaction; Quinazoline; linagliptin; molecular docking..

PubMed Disclaimer

MeSH terms

LinkOut - more resources