Thermally-drawn fibers with spatially-selective porous domains
- PMID: 28848237
- PMCID: PMC5573721
- DOI: 10.1038/s41467-017-00375-0
Thermally-drawn fibers with spatially-selective porous domains
Abstract
The control of mass transport using porous fibers is ubiquitous, with applications ranging from filtration to catalysis. Yet, to date, porous fibers have been made of single materials in simple geometries, with limited function. Here we report the fabrication and characterization of thermally drawn multimaterial fibers encompassing internal porous domains alongside non-porous insulating and conductive materials, in highly controlled device geometries. Our approach utilizes phase separation of a polymer solution during the preform-to-fiber drawing process, generating porosity as the fiber is drawn. Engineering the preform structure grants control over the geometry and materials architecture of the final porous fibers. Electrical conductivity of the selectrolyte-filled porous domains is substantiated through ionic conductivity measurements using electrodes thermally drawn in the cross-section. Pore size tunability between 500 nm-10 µm is established by regulating the phase separation kinetics. We further demonstrate capillary breakup of cylindrical porous structures porous microspheres within the fiber core.Porous polymer fibers show great potential for a range of applications, but their simple structures typically limit their functionality. Here, the authors combine a thermal drawing process with polymer solution phase separation to fabricate porous multimaterial fibers with complex internal architectures.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
References
-
- Kapantaidakis GC, Koops GH. High flux polyethersulfone–polyimide blend hollow fiber membranes for gas separation. J. Memb. Sci. 2002;204:153–171. doi: 10.1016/S0376-7388(02)00030-3. - DOI
-
- Li Y, Cao C, Chung TS, Pramoda KP. Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J. Memb. Sci. 2004;245:53–60. doi: 10.1016/j.memsci.2004.08.002. - DOI
-
- Hosseini SS, Peng N, Chung TS. Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments. J. Memb. Sci. 2010;349:156–166. doi: 10.1016/j.memsci.2009.11.043. - DOI
-
- Tan X, Tan SP, Teo WK, Li K. Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J. Memb. Sci. 2006;271:59–68. doi: 10.1016/j.memsci.2005.06.057. - DOI
-
- Wang KY, Chung TS, Gryta M. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem. Eng. Sci. 2008;63:2587–2594. doi: 10.1016/j.ces.2008.02.020. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
