Taurine Chloramine Suppresses LPS-Induced Neuroinflammatory Responses through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse BV2 Microglial Cells
- PMID: 28849450
- DOI: 10.1007/978-94-024-1079-2_12
Taurine Chloramine Suppresses LPS-Induced Neuroinflammatory Responses through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse BV2 Microglial Cells
Abstract
The brain is sensitive to the inflammation and oxidative stress that can cause the aging or neurodegenerative diseases. We investigated the anti-neuroinflammatory activities of taurine chloramine (TauCl) on lipopolysaccharide (LPS)-treated mouse BV2 microglia mediated through heme oxygenase (HO)-1 expression. TauCl inhibited the protein expressions of prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, nitric oxide (NO), and inducible nitric oxide synthase (iNOS) in LPS-treated BV2 microglia. TauCl markedly inhibited interleukin-6 (IL-6), interleukin-1𝛽 (IL-1𝛽) and tumor necrosis factor-𝛼 (TNF-𝛼) production. These effects were related to the suppression of the degradation and phosphorylation of inhibition of nuclear factor kappa B-𝛼 (I𝜅B-𝛼), translocation of nuclear factor kappa B (NF-𝜅B) as well as DNA binding activity. In addition, TauCl induced the HO-1 expression by increasing the nuclear factor E2-related factor 2 (Nrf2) translocation to the nucleus in mouse BV2 microglia. These findings suggest that TauCl has protective effects of neurodegenerative disorders caused by neuroinflammation.
Keywords: BV2 microglial cells; Heme oxygenase-1; Lipopolysaccharide; Neuroinflammatory; Taurine chloramine.
References
-
- Beynon SB, Walker FR (2012) Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 225:162–171. doi: 10.1016/j.neuroscience.2012.07.029 - DOI - PubMed
-
- Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Neurosci Res 149:2736–2741
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
