Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul;175(14):2825-2833.
doi: 10.1111/bph.13993. Epub 2017 Sep 26.

Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations

Affiliations
Review

Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations

Taylor S Thomas et al. Br J Pharmacol. 2018 Jul.

Abstract

The current view of the midbrain dopaminergic system is evolving towards a complex system of subpopulations of neurons with distinct afferent and efferent connections and, importantly, functionally different intrinsic characteristics. Recent literature on the phenotypic diversity of dopaminergic neurons has outlined that in the ventral tegmental area dopaminergic neurons are not as anatomically or electrophysiologically homogeneous as they were once thought to be. Instead, the midbrain dopaminergic system is now understood to be composed of anatomically and functionally heterogeneous dopaminergic subpopulations receiving specific afferent inputs and with different axonal projections. An additional layer of complexity is the neuromodulation of each of these dopaminergic circuits. This review will examine the distinguishing electrophysiological and neuromodulatory characteristics of the afferent and efferent connections of midbrain dopaminergic neurons.

Linked articles: This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Input and output neurocircuits of projection‐target defined VTA dopaminergic neurons. This schematic depicts a subset of the afferent inputs and the efferent outputs of VTA dopaminergic neurons. It also illustrates the specific properties of these neurons as revealed by electrophysiological recordings in retrograde labelled cells, pharmacological analysis and by selective optogenetic stimulation.

References

    1. Albanese A, Minciacchi D (1983). Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 216: 406–420. - PubMed
    1. Alexander SPH, Davenport AP, Kelly E, Marrion N, Peters JA, Benson HE et al (2015a). The Concise Guide to PHARMACOLOGY 2015/16: G protein‐coupled receptors. Br J Pharmacol 172: 5744–5869. - PMC - PubMed
    1. Alexander SPH, Peters JA, Kelly E, Marrion N, Benson HE, Faccenda E et al (2015b). The Concise Guide to PHARMACOLOGY 2015/16: Ligand‐gated ion channels. Br J Pharmacol 172: 5870–5903. - PMC - PubMed
    1. Alexander SPH, Catterall WA, Kelly E, Marrion N, Peters JA, Benson HE et al (2015c). The Concise Guide to PHARMACOLOGY 2015/16: Voltage‐gated ion channels. Br J Pharmacol 172: 5904–5941. - PMC - PubMed
    1. Alexander SPH, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E et al (2015d). The Concise Guide to PHARMACOLOGY 2015/16: Transporters. Br J Pharmacol 172: 6110–6202. - PMC - PubMed

Publication types

Grants and funding

LinkOut - more resources