MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application
- PMID: 28850760
- PMCID: PMC5740004
- DOI: 10.1002/dvdy.24582
MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application
Abstract
MicroRNAs are master regulators of gene expression. Single microRNAs influence multiple proteins within diverse molecular pathways and networks. Therefore, changes in levels or activity of microRNAs can have profound effects on cellular function. This makes dysregulated microRNA-induced silencing an attractive potential disease mechanism in complex disorders like epilepsy, where numerous cellular pathways and processes are affected simultaneously. Indeed, several years of research in rodent models have provided strong evidence that acute or recurrent seizures change microRNA expression and function. Moreover, altered microRNA expression has been observed in brain and blood from patients with various epilepsy disorders, such as tuberous sclerosis. MicroRNAs can be easily manipulated using sense or antisense oligonucleotides, opening up opportunities for therapeutic intervention. Here, we summarize studies using these techniques to identify microRNAs that modulate seizure susceptibility, describe protein targets mediating some of these effects, and discuss cellular pathways, for example neuroinflammation, that are controlled by epilepsy-associated microRNAs. We critically assess current gaps in knowledge regarding target- and cell-specificity of microRNAs that have to be addressed before clinical application as therapeutic targets or biomarkers. The recent progress in understanding microRNA function in epilepsy has generated strong momentum to encourage in-depth mechanistic studies to develop microRNA-targeted therapies. Developmental Dynamics 247:94-110, 2018. © 2017 Wiley Periodicals, Inc.
Keywords: RISC; miRNA; neuroinflammation; seizure; status epilepticus; therapy; tuberous sclerosis.
© 2017 Wiley Periodicals, Inc.
Figures


References
-
- Alsharafi W, Xiao B. Dynamic Expression of MicroRNAs (183, 135a, 125b, 128, 30c and 27a) in the Rat Pilocarpine Model and Temporal Lobe Epilepsy Patients. CNS Neurol Disord Drug Targets. 2015;14:1096–1102. - PubMed
-
- Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, Baayen JC, Gorter JA. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010;31:1100–1107. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical