Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 29;7(1):9641.
doi: 10.1038/s41598-017-09389-6.

In-situ observation of ultrafast 90° domain switching under application of an electric field in (100)/(001)-oriented tetragonal epitaxial Pb(Zr0.4Ti0.6)O3 thin films

Affiliations

In-situ observation of ultrafast 90° domain switching under application of an electric field in (100)/(001)-oriented tetragonal epitaxial Pb(Zr0.4Ti0.6)O3 thin films

Yoshitaka Ehara et al. Sci Rep. .

Abstract

Ferroelastic domain switching significantly affects piezoelectric properties in ferroelectric materials. The ferroelastic domain switching and the lattice deformation of both a-domains and c-domains under an applied electric field were investigated using in-situ synchrotron X-ray diffraction in conjunction with a high-speed pulse generator set up for epitaxial (100)/(001)-oriented tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) films grown on (100) c SrRuO3//(100)KTaO3 substrates. The 004 peak (c-domain) position shifts to a lower 2θ angle, which demonstrates the elongation of the c-axis lattice parameter of the c-domain under an applied electric field. In contrast, the 400 peak (a-domain) shifts in the opposite direction (higher angle), thus indicating a decrease in the a-axis lattice parameter of the a-domain. 90° domain switching from (100) to (001) orientations (from a-domain to c-domain) was observed by a change in the intensities of the 400 and 004 diffraction peaks by applying a high-speed pulsed electric field 200 ns in width. This change also accompanied a tilt in the angles of each domain from the substrate surface normal direction. This behaviour proved that the 90° domain switched within 40 ns under a high-speed pulsed electric field. Direct observation of such high-speed switching opens the way to design piezo-MEMS devices for high-frequency operation.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
HRXRD 2θ-ω mappings near (a) PZT 400 and (b) PZT 004 for (100)/(001)-oriented epitaxial tetragonal Pb(Zr0.4Ti0.6)O3 films. (c) Schematic representation of the domain structure.
Figure 2
Figure 2
HRXRD 2θ scans of (a) PZT 004 [scan II in Fig. 1(b)] and (b) PZT 400 [scan I in Fig. 1(a)] measured under a 200-ns pulsed electric field with amplitudes of 0 kV/cm (open squares) and 170 kV/cm (filled circles) for the same Pb(Zr0.4Ti0.6)O3 films shown in Fig. 1.
Figure 3
Figure 3
Rocking curves (ω scans) of (a) 004 PZT under 0 kV/cm (open squares) and 170 kV/cm (filled circles) in scan V in Fig. 1(b). (b,c) Rocking curve of 400 PZT under 0 kV/cm (open squares) and 170 kV/cm (filled circles) of image in (b) scan III and (c) scan IV in Fig. 1(a), respectively.
Figure 4
Figure 4
(a) Capacitance and (e) calculated differential capacitance by time as a function of time during application of a 200-ns pulsed electric field with a magnitude of 170 kV/cm. The solid line in panel (a) indicates applied pulse voltage measured by reference capacitor. (b) Strain, (c) tilting angle, (d) intensity, and (f)V c of PZT 400 (circles) and PZT 004 (squares) peaks as a function of time during application of a 200-ns pulsed electric field with a magnitude of 170 kV/cm. Iintensities are integrated one obtained by peak fitting. Open circles and squares are calculated by the 004 diffraction peak from the c-domain and the 400 diffraction peak from the a-domain, respectively. Total strain including extrinsic contribution (open diamond) was also plotted in panel (b).

Similar articles

Cited by

References

    1. Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 2000;10 doi: 10.1088/0960-1317/10/2/307. - DOI
    1. Jones JL, Slamovich EB, Bowman KJ. Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction. J. Appl. Phys. 2005;97 doi: 10.1063/1.1849821. - DOI
    1. Kim D-J, Maria J-P, Kingon AI, Streiffer SK. Evaluation of intrinsic and extrinsic contributions to the piezoelectric properties of Pb(Zr1−XTX)O3 thin films as a function of composition. J. Appl. Phys. 2003;93 doi: 10.1063/1.1566478. - DOI
    1. Nagarajan V, et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nat Mater. 2003;2:43–47. doi: 10.1038/nmat800. - DOI - PubMed
    1. Lee KS, Kim YK, Baik S, Kim J, Jung IIS. In situ observation of ferroelectric 90°-domain switching in epitaxial Pb(Zr, Ti)O3 thin films by synchrotron x-ray diffraction. Appl. Phys. Lett. 2001;79 doi: 10.1063/1.1406981. - DOI

Publication types

LinkOut - more resources