Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jun 1;165(2):437-42.
doi: 10.1111/j.1432-1033.1987.tb11457.x.

Molecular cloning and nucleotide sequence of full-length cDNA for sweet potato catalase mRNA

Free article

Molecular cloning and nucleotide sequence of full-length cDNA for sweet potato catalase mRNA

S Sakajo et al. Eur J Biochem. .
Free article

Abstract

A nearly full-length cDNA clone for catalase (pCAS01) was obtained through immunological screening of cDNA expression library constructed from size-fractionated poly(A)-rich RNA of wounded sweet potato tuberous roots by Escherichia coli expression vector-primed cDNA synthesis. Two additional catalase cDNA clones (pCAS10 and pCAS13), which contained cDNA inserts slightly longer than that of pCAS01 at their 5'-termini, were identified by colony hybridization of another cDNA library. Those three catalase cDNAs contained primary structures not identical, but closely related, to one another based on their restriction enzyme and RNase cleavage mapping analyses, suggesting that microheterogeneity exists in catalase mRNAs. The cDNA insert of pCAS13 carried the entire catalase coding capacity, since the RNA transcribed in vitro from the cDNA under the SP6 phage promoter directed the synthesis of a catalase polypeptide in the wheat germ in vitro translation assay. The nucleotide sequencing of these catalase cDNAs indicated that 1900-base catalase mRNA contained a coding region of 1476 bases. The amino acid sequence of sweet potato catalase deduced from the nucleotide sequence was 35 amino acids shorter than rat liver catalase [Furuta, S., Hayashi, H., Hijikata, M., Miyazawa, S., Osumi, T. & Hashimoto, T. (1986) Proc. Natl Acad. Sci. USA 83, 313-317]. Although these two sequences showed only 38% homology, the sequences around the amino acid residues implicated in catalytic function, heme ligand or heme contact had been well conserved during evolution.

PubMed Disclaimer

Similar articles

Cited by

Associated data

LinkOut - more resources