Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 14;23(30):5508-5518.
doi: 10.3748/wjg.v23.i30.5508.

MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett's esophagus

Affiliations

MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett's esophagus

Loveena Sreedharan et al. World J Gastroenterol. .

Abstract

Aim: To investigate the microRNA expression profile in esophageal neosquamous epithelium from patients who had undergone ablation of Barrett's esophagus.

Methods: High throughput screening using TaqMan® Array Human MicroRNA quantitative PCR was used to determine expression levels of 754 microRNAs in distal esophageal mucosa (1 cm above the gastro-esophageal junction) from 16 patients who had undergone ablation of non-dysplastic Barrett's esophagus using argon plasma coagulation vs pretreatment mucosa, post-treatment proximal normal non-treated esophageal mucosa, and esophageal mucosal biopsies from 10 controls without Barrett's esophagus. Biopsies of squamous mucosa were also taken from 5 cm above the pre-ablation squamo-columnar junction. Predicted mRNA target pathway analysis was used to investigate the functional involvement of differentially expressed microRNAs.

Results: Forty-four microRNAs were differentially expressed between control squamous mucosa vs post-ablation neosquamous mucosa. Nineteen microRNAs were differentially expressed between post-ablation neosquamous and post-ablation squamous mucosa obtained from the more proximal non-treated esophageal segment. Twelve microRNAs were differentially expressed in both neosquamous vs matched proximal squamous mucosa and neosquamous vs squamous mucosa from healthy patients. Nine microRNAs (miR-424-5p, miR-127-3p, miR-98-5p, miR-187-3p, miR-495-3p, miR-34c-5p, miR-223-5p, miR-539-5p, miR-376a-3p, miR-409-3p) were expressed at higher levels in post-ablation neosquamous mucosa than in matched proximal squamous and healthy squamous mucosa. These microRNAs were also more highly expressed in Barrett's esophagus mucosa than matched proximal squamous and squamous mucosa from controls. Target prediction and pathway analysis suggests that these microRNAs may be involved in the regulation of cell survival signalling pathways. Three microRNAs (miR-187-3p, miR-135b-5p and miR-31-5p) were expressed at higher levels in post-ablation neosquamous mucosa than in matched proximal squamous and healthy squamous mucosa. These miRNAs were expressed at similar levels in pre-ablation Barrett's esophagus mucosa, matched proximal squamous and squamous mucosa from controls. Target prediction and pathway analysis suggests that these microRNAs may be involved in regulating the expression of proteins that contribute to barrier function.

Conclusion: Neosquamous mucosa arising after ablation of Barrett's esophagus expresses microRNAs that may contribute to decreased barrier function and microRNAs that may be involved in the regulation of survival signaling pathways.

Keywords: Ablation; Barrett’s esophagus; Neosquamous.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Normalised relative expression levels in control squamous mucosa (control-S), post-ablation squamous mucosa (post-S), post-ablation neosquamous mucosa (post-NS) and pre-ablation Barrett’s esophagus mucosa (pre-BE) of representative microRNAs, miR-424-5p (A) and miR-187-3p (B). Horizontal bars are medians.

Similar articles

Cited by

References

    1. Chisholm JA, Mayne GC, Hussey DJ, Watson DI. Molecular biomarkers and ablative therapies for Barrett’s esophagus. Expert Rev Gastroenterol Hepatol. 2012;6:567–581. - PubMed
    1. Phillips WA, Lord RV, Nancarrow DJ, Watson DI, Whiteman DC. Barrett’s esophagus. J Gastroenterol Hepatol. 2011;26:639–648. - PubMed
    1. Fassan M, Volinia S, Palatini J, Pizzi M, Baffa R, De Bernard M, Battaglia G, Parente P, Croce CM, Zaninotto G, et al. MicroRNA expression profiling in human Barrett’s carcinogenesis. Int J Cancer. 2011;129:1661–1670. - PMC - PubMed
    1. Shaheen NJ, Richter JE. Barrett’s oesophagus. Lancet. 2009;373:850–861. - PubMed
    1. Haidry RJ, Dunn JM, Butt MA, Burnell MG, Gupta A, Green S, Miah H, Smart HL, Bhandari P, Smith LA, et al. Radiofrequency ablation and endoscopic mucosal resection for dysplastic barrett’s esophagus and early esophageal adenocarcinoma: outcomes of the UK National Halo RFA Registry. Gastroenterology. 2013;145:87–95. - PubMed

MeSH terms