Intrinsic and extrinsic influences on standard metabolic rates of three species of Australian otariid
- PMID: 28852504
- PMCID: PMC5570045
- DOI: 10.1093/conphys/cow074
Intrinsic and extrinsic influences on standard metabolic rates of three species of Australian otariid
Abstract
The study of marine mammal energetics can shed light on how these animals might adapt to changing environments. Their physiological potential to adapt will be influenced by extrinsic factors, such as temperature, and by intrinsic factors, such as sex and reproduction. We measured the standard metabolic rate (SMR) of males and females of three Australian otariid species (two Australian fur seals, three New Zealand fur seals and seven Australian sea lions). Mean SMR ranged from 0.47 to 1.05 l O2 min-1, which when adjusted for mass was from 5.33 to 7.44 ml O2 min-1 kg-1. We found that Australian sea lion mass-specific SMR (sSMR; in millilitres of oxygen per minute per kilogram) varied little in response to time of year or moult, but was significantly influenced by sex and water temperature. Likewise, sSMR of Australian and New Zealand fur seals was also influenced by sex and water temperature, but also by time of year (pre-moult, moult or post-moult). During the moult, fur seals had significantly higher sSMR than at other times of the year, whereas there was no discernible effect of moult for sea lions. For both groups, females had higher sSMR than males, but sea lions and fur seals showed different responses to changes in water temperature. The sSMR of fur seals increased with increasing water temperature, whereas sSMR of sea lions decreased with increasing water temperature. There were no species differences when comparing animals of the same sex. Our study suggests that fur seals have more flexibility in their physiology than sea lions, perhaps implying that they will be more resilient in a changing environment.
Keywords: Metabolic rate; otariid; sex; water temperature.
Figures






References
-
- Ahonen H, Lowther AD, Harcourt RG, Goldsworthy SD, Charrier I, Stow AJ (2016) The limits of dispersal: fine scale spatial genetic structure in Australian sea lions. Front Mar Sci 3: 65 doi:10.3389/fmars.2016.00065. - DOI
-
- Arnould JP, Hindell MA (2001) Dive behaviour, foraging locations, and maternal-attendance patterns of Australian fur seals (Arctocephalus pusillus doriferus). Can J Zool 79: 35–48.
-
- Arnould JP, Warneke RM (2002) Growth and condition in Australian fur seals (Arctocephalus pusillus doriferus) (Carnivora: Pinnipedia). Aust J Zool 50: 53–66.
-
- Ashwell-Erickson S, Fay FH, Elsner R, Wartzok D (1986) Metabolic and hormonal correlates of molting and regeneration of pelage in Alaskan harbor and spotted seals (Phoca vitulina and Phoca largha). Can J Zool 64: 1086–1094.
-
- Bartoń K. (2013) MuMIn: multi-model inference, R package version 1.9.13.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous