Small nucleoli are a cellular hallmark of longevity
- PMID: 28853436
- PMCID: PMC5582349
- DOI: 10.1038/ncomms16083
Small nucleoli are a cellular hallmark of longevity
Abstract
Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
Comment in
-
Ageing: Live longer with small nucleoli.Nat Rev Mol Cell Biol. 2017 Nov;18(11):651. doi: 10.1038/nrm.2017.100. Epub 2017 Sep 27. Nat Rev Mol Cell Biol. 2017. PMID: 28951566 No abstract available.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
