Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun;38(7):1237-1244.
doi: 10.1177/0333102417729113. Epub 2017 Aug 30.

Altered thalamic connectivity during spontaneous attacks of migraine without aura: A resting-state fMRI study

Affiliations

Altered thalamic connectivity during spontaneous attacks of migraine without aura: A resting-state fMRI study

Faisal Mohammad Amin et al. Cephalalgia. 2018 Jun.

Abstract

Background Functional connectivity of brain networks may be altered in migraine without aura patients. Functional magnetic resonance imaging (fMRI) studies have demonstrated changed activity in the thalamus, pons and cerebellum in migraineurs. Here, we investigated the thalamic, pontine and cerebellar network connectivity during spontaneous migraine attacks. Methods Seventeen patients with episodic migraine without aura underwent resting-state fMRI scan during and outside of a spontaneous migraine attack. Primary endpoint was a difference in functional connectivity between the attack and the headache-free days. Functional connectivity was assessed in four different networks using seed-based analysis. The chosen seeds were in the thalamus (MNI coordinates x,y,z: right, 22,-24,0 and left, -22,-28,6), pons (right, 8,-24,-32 and left, -8,-24,-32), cerebellum crus I (right, 46,-58,-30 and left, -46,-58,-30) and cerebellum lobule VI (right, 34,-42,-36 and left, -32,-42,-36). Results We found increased functional connectivity between the right thalamus and several contralateral brain regions (superior parietal lobule, insular cortex, primary motor cortex, supplementary motor area and orbitofrontal cortex). There was decreased functional connectivity between the right thalamus and three ipsilateral brain areas (primary somatosensory cortex and premotor cortex). We found no change in functional connectivity in the pontine or the cerebellar networks. Conclusions The study indicates that network connectivity between thalamus and pain modulating as well as pain encoding cortical areas are affected during spontaneous migraine attacks.

Keywords: Migraine thalamus; migraine imaging; migraine pathophysiology; migraine resting-state fMRI.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources