Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 13;139(36):12610-12616.
doi: 10.1021/jacs.7b06385. Epub 2017 Aug 31.

Direct Electrochemical Bioconjugation on Metal Surfaces

Affiliations

Direct Electrochemical Bioconjugation on Metal Surfaces

Ariel L Furst et al. J Am Chem Soc. .

Abstract

DNA has unique capabilities for molecular recognition and self-assembly, which have fostered its widespread incorporation into devices that are useful in science and medicine. Many of these platforms rely on thiol groups to tether DNA to gold surfaces, but this method is hindered by a lack of control over monolayer density and by secondary interactions between the nucleotide bases and the metal. In this work, we report an electrochemically activated bioconjugation reaction as a mild, reagent-free strategy to attach oligonucleotides to gold surfaces. Aniline-modified DNA was coupled to catechol-coated electrodes that were oxidized to o-quinones using an applied potential. High levels of coupling could be achieved in minutes. By changing the reaction time and the underlying catechol content, the final DNA surface coverage could be specified. The advantages of this method were demonstrated through the electrochemical detection of the endocrine disruptor bisphenol A, as well as the capture of living nonadherent cells on electrode surfaces by DNA hybridization. This method not only improves the attachment of DNA to metal surfaces but also represents a new direction for the site-specific attachment of biomolecules to device platforms.

PubMed Disclaimer

Publication types

LinkOut - more resources