Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 20;7(10):e2320.
doi: 10.21769/BioProtoc.2320.

Creating a RAW264.7 CRISPR-Cas9 Genome Wide Library

Affiliations

Creating a RAW264.7 CRISPR-Cas9 Genome Wide Library

Brooke A Napier et al. Bio Protoc. .

Abstract

The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome editing tools are used in mammalian cells to knock-out specific genes of interest to elucidate gene function. The CRISPR-Cas9 system requires that the mammalian cell expresses Cas9 endonuclease, guide RNA (gRNA) to lead the endonuclease to the gene of interest, and the PAM sequence that links the Cas9 to the gRNA. CRISPR-Cas9 genome wide libraries are used to screen the effect of each gene in the genome on the cellular phenotype of interest, in an unbiased high-throughput manner. In this protocol, we describe our method of creating a CRISPR-Cas9 genome wide library in a transformed murine macrophage cell-line (RAW264.7). We have employed this library to identify novel mediators in the caspase-11 cell death pathway (Napier et al., 2016); however, this library can then be used to screen the importance of specific genes in multiple murine macrophage cellular pathways.

Keywords: CRISPR; Library; Macrophages; RAW264.7; Screen.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Graphical abstract of Koike-Yusa et al. (2014) amplification protocol of the gRNA library

References

    1. Chen S., Sanjana N. E., Zheng K., Shalem O., Lee K., Shi X., Scott D. A., Song J., Pan J. Q., Weissleder R., Lee H., Zhang F. and Sharp P. A.(2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6): 1246-1260. - PMC - PubMed
    1. Kiessling M. K., Sven. Schuierer, Silke. Stertz, Martin. Beibel, Sebastian. Bergling, Judith. Knehr, Walter. Carbone, Cheryl. Vallière, Joelle. Tchinda, Tewis. Bouwmeester, Klaus. Seuwen, Gerhard. Rogler and Roma Guglielmo.(2016). Identification of oncogenic driver mutations by genome-wide CRISPR-Cas9 dropout screening. BMC genomics 17, 723. - PMC - PubMed
    1. Koike-Yusa H., Li Y., Tan E. P., Velasco-Herrera Mdel C. and Yusa K.(2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3): 267-273. - PubMed
    1. Marceau C. D., Puschnik A. S., Majzoub K., Ooi Y. S., Brewer S. M., Fuchs G., Swaminathan K., Mata M. A., Elias J. E., Sarnow P. and Carette J. E.(2016). Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens . Nature 535(7610): 159-163. - PMC - PubMed
    1. Napier B. A., Brubaker S. W., Sweeney T. E., Monette P., Rothmeier G. H., Gertsvolf N. A., Puschnik A., Carette J. E., Khatri P. and Monack D. M.(2016). Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med 213(11): 2365-2382. - PMC - PubMed