Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jul;37(3):200-206.
doi: 10.1111/j.1399-3054.1976.tb03958.x.

The Critical Oxygen Pressures for Respiration in Intact Plants

Affiliations

The Critical Oxygen Pressures for Respiration in Intact Plants

W Armstrong et al. Physiol Plant. 1976 Jul.

Abstract

Two methods for determining critical respiratory oxygen pressure in whole plants are described. By a polarographic method involving the use of cylindrical platinum electrodes the following critical oxygen pressures for root respiration were found: Rice (cv. Norin 36). 0.024 atm: Rice (cv. Norm 37). 0.026 atm: Eriophorum angustifolium. 0.02 atm. These values contrast markedly with those obtained in vitro, and support earlier criticisms of in vitro measurements: they call into question the use of such data in the modelling of root aeration. When the results were assessed by an electrical analogue system, it was concluded that the respiratory activity in the intact root does not follow the normally accepted hyperbolic relationship with oxygen partial pressure. The experimental data were simulated most closely by assuming the critical oxygen pressure to be a function of respiratory responses in the low porosity (high diffusional impedance) tissues of the root meristem and stele, and respiratory activity in the moderately porous root cortex to be unaffected at values greater than 0.001 atm. A critical oxygen pressure of 0.025-0.04 atm for E. angustifolium was found from analyses of the gas phase oxygen in the leaves of whole plants after submergence in the dark. It was concluded that the higher value found by this method was most likely a function of respiratory responses in root tissue remote from the leaf and should not be regarded as the critical oxygen pressure for leaf respiration. The form of the oxygen concentration vs. time plot again suggested a very much lower critical oxygen pressure for certain of the plant tissues.

PubMed Disclaimer

LinkOut - more resources