Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct 30;532(1):1-12.
doi: 10.1016/j.ijpharm.2017.08.123. Epub 2017 Sep 1.

Supersaturating drug delivery systems: The potential of co-amorphous drug formulations

Affiliations
Review

Supersaturating drug delivery systems: The potential of co-amorphous drug formulations

Riikka Laitinen et al. Int J Pharm. .

Abstract

Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading to high dosage volumes and thereby challenges in the formulation of the final dosage form. As a response to the shortcomings of the ASDs, the so-called co-amorphous formulations, which are amorphous combinations of two or more low molecular weight components, have emerged as an alternative formulation strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition is needed. The current status of this research is reviewed in this paper. Furthermore, the potential of novel preparation methods for co-amorphous systems with respect to the current preparation methods are discussed.

Keywords: Amorphous solid dispersion; Co-amorphous; Dissolution; Supersaturation.

PubMed Disclaimer