Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
- PMID: 28872634
- PMCID: PMC5685212
- DOI: 10.1038/sdata.2017.117
Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
Abstract
Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release segmentation labels and radiomic features for all pre-operative multimodal magnetic resonance imaging (MRI) (n=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The Cancer Imaging Archive (TCIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM, n=135) and low-grade-glioma (TCGA-LGG, n=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method.
Conflict of interest statement
The authors declare no competing financial interests.
Figures



Dataset use reported in
- doi: 10.1007/978-3-319-30858-6_13
Similar articles
-
Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.Eur Radiol. 2020 Jul;30(7):3834-3842. doi: 10.1007/s00330-020-06737-5. Epub 2020 Mar 11. Eur Radiol. 2020. PMID: 32162004
-
Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.Eur Radiol. 2018 Jul;28(7):2960-2968. doi: 10.1007/s00330-017-5267-0. Epub 2018 Feb 5. Eur Radiol. 2018. PMID: 29404769
-
Magnetic resonance imaging-based radiomic features for extrapolating infiltration levels of immune cells in lower-grade gliomas.Strahlenther Onkol. 2020 Oct;196(10):913-921. doi: 10.1007/s00066-020-01584-1. Epub 2020 Feb 5. Strahlenther Onkol. 2020. PMID: 32025804
-
Radiomics in gliomas: A promising assistance for glioma clinical research.Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018 Apr 28;43(4):354-359. doi: 10.11817/j.issn.1672-7347.2018.04.004. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018. PMID: 29774870 Review.
-
Radiogenomics of Gliomas.Radiol Clin North Am. 2021 May;59(3):441-455. doi: 10.1016/j.rcl.2021.02.002. Radiol Clin North Am. 2021. PMID: 33926688 Review.
Cited by
-
Deep Learning Hybrid Techniques for Brain Tumor Segmentation.Sensors (Basel). 2022 Oct 26;22(21):8201. doi: 10.3390/s22218201. Sensors (Basel). 2022. PMID: 36365900 Free PMC article.
-
Observing deep radiomics for the classification of glioma grades.Sci Rep. 2021 May 25;11(1):10942. doi: 10.1038/s41598-021-90555-2. Sci Rep. 2021. PMID: 34035410 Free PMC article.
-
SurvNet: A low-complexity convolutional neural network for survival time classification of patients with glioblastoma.Heliyon. 2024 Jun 12;10(12):e32870. doi: 10.1016/j.heliyon.2024.e32870. eCollection 2024 Jun 30. Heliyon. 2024. PMID: 38988550 Free PMC article.
-
XGBoost Improves Classification of MGMT Promoter Methylation Status in IDH1 Wildtype Glioblastoma.J Pers Med. 2020 Sep 15;10(3):128. doi: 10.3390/jpm10030128. J Pers Med. 2020. PMID: 32942564 Free PMC article.
-
Dilated multi-scale residual attention (DMRA) U-Net: three-dimensional (3D) dilated multi-scale residual attention U-Net for brain tumor segmentation.Quant Imaging Med Surg. 2024 Oct 1;14(10):7249-7264. doi: 10.21037/qims-24-779. Epub 2024 Sep 19. Quant Imaging Med Surg. 2024. PMID: 39429586 Free PMC article.
References
Data Citations
-
- Scarpace L. 2016. The Cancer Imaging Archive. http://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9 - DOI
-
- Pedano N. 2016. The Cancer Imaging Archive. http://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK - DOI
-
- Bakas S. 2017. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q - DOI
-
- Bakas S. 2017. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF - DOI
References
-
- Rutman A. M. & Kuo M. D. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging. European Journal of Radiology 70, 232–241 (2009). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical