Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2017 Sep 6;17(1):238.
doi: 10.1186/s12872-017-0672-5.

Comparative effectiveness of rivaroxaban versus warfarin or dabigatran for the treatment of patients with non-valvular atrial fibrillation

Affiliations
Observational Study

Comparative effectiveness of rivaroxaban versus warfarin or dabigatran for the treatment of patients with non-valvular atrial fibrillation

Faye L Norby et al. BMC Cardiovasc Disord. .

Abstract

Background: Rivaroxaban is an oral anticoagulant approved in the US for prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation (NVAF). We determined the effectiveness and associated risks of rivaroxaban versus other oral anticoagulants in a large real-world population.

Methods: We selected NVAF patients initiating oral anticoagulant use in 2010-2014 enrolled in MarketScan databases. Rivaroxaban users were matched with warfarin and dabigatran users by age, sex, enrolment date, anticoagulant initiation date, and high-dimensional propensity score. Study endpoints, including ischemic stroke, intracranial bleeding (ICB), myocardial infarction (MI), and gastrointestinal (GI) bleeding, were identified from inpatient diagnostic codes. Multivariable Cox models were used to assess associations between type of anticoagulant and outcomes.

Results: The analysis included 44,340 rivaroxaban users matched to 89,400 warfarin and 16,957 dabigatran users (38% female, mean age 70) with 12 months of mean follow-up. Anticoagulant-naïve rivaroxaban initiators, but not those switching from warfarin, had lower risk of ischemic stroke [hazard ratio (HR) (95% confidence interval (CI)): 0.75 (0.62, 0.91)] and ICB [HR (95%CI): 0.55, (0.39, 0.78)] than warfarin users. In contrast, anticoagulant-experienced rivaroxaban initiators had higher risk of GI bleeding than warfarin users [HR (95%CI): 1.55 (1.32, 1.83)]. Endpoint rates were similar when comparing anticoagulant-naïve rivaroxaban and dabigatran initiators, with the exception of higher GI bleeding risk in rivaroxaban users [HR (95%CI) 1.28 (1.06, 1.54)]. There were no significant differences in the risk of MI among the comparison groups.

Conclusion: In this large real-world sample of NVAF patients, effectiveness and risks of rivaroxaban versus warfarin differed by prior anticoagulant status, while effectiveness of rivaroxaban versus dabigatran differed in GI bleeding risk.

Keywords: Dabigatran; Non-valvular atrial fibrillation; Rivaroxaban; Stroke; Warfarin.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All patient information is Health Insurance Portability and Accountability Act compliant, de-identified, commercially available secondary data, and therefore the Institutional Review Board at the University of Minnesota deemed this analysis exempt from review.

Consent for publication

Not applicable.

Competing interests

Dr. Bengtson is an employee of Optum. All other authors have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Adjusted hazard ratios (95% confidence intervals) of outcomes among anticoagulant users, stratified by subgroups, MarketScan, 2010–2014. Panel a: New rivaroxaban users vs. new warfarin users. Panel b: Patients who switched from warfarin to rivaroxaban vs. persistent warfarin users. Panel c: New rivaroxaban users vs. new dabigatran users

References

    1. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, D'Agostino RB, Massaro JM, Beiser A, Wolf PA, et al. Lifetime risk for development of atrial fibrillation: the Framingham heart study. Circulation. 2004;110(9):1042–1046. doi: 10.1161/01.CIR.0000140263.20897.42. - DOI - PubMed
    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360. doi: 10.1161/CIR.0000000000000350. - DOI - PubMed
    1. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112(8):1142–1147. doi: 10.1016/j.amjcard.2013.05.063. - DOI - PubMed
    1. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke. 1991;22(8):983–988. doi: 10.1161/01.STR.22.8.983. - DOI - PubMed
    1. Glotzer TV, Daoud EG, Wyse DG, Singer DE, Ezekowitz MD, Hilker C, Miller C, Qi D, Ziegler PD. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol. 2009;2(5):474–480. doi: 10.1161/CIRCEP.109.849638. - DOI - PubMed

Publication types

MeSH terms