Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2017 Sep 6;21(1):233.
doi: 10.1186/s13054-017-1816-9.

Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study

Collaborators, Affiliations
Observational Study

Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study

Maryse C Cnossen et al. Crit Care. .

Abstract

Background: No definitive evidence exists on how intracranial hypertension should be treated in patients with traumatic brain injury (TBI). It is therefore likely that centers and practitioners individually balance potential benefits and risks of different intracranial pressure (ICP) management strategies, resulting in practice variation. The aim of this study was to examine variation in monitoring and treatment policies for intracranial hypertension in patients with TBI.

Methods: A 29-item survey on ICP monitoring and treatment was developed on the basis of literature and expert opinion, and it was pilot-tested in 16 centers. The questionnaire was sent to 68 neurotrauma centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study.

Results: The survey was completed by 66 centers (97% response rate). Centers were mainly academic hospitals (n = 60, 91%) and designated level I trauma centers (n = 44, 67%). The Brain Trauma Foundation guidelines were used in 49 (74%) centers. Approximately 90% of the participants (n = 58) indicated placing an ICP monitor in patients with severe TBI and computed tomographic abnormalities. There was no consensus on other indications or on peri-insertion precautions. We found wide variation in the use of first- and second-tier treatments for elevated ICP. Approximately half of the centers were classified as using a relatively aggressive approach to ICP monitoring and treatment (n = 32, 48%), whereas the others were considered more conservative (n = 34, 52%).

Conclusions: Substantial variation was found regarding monitoring and treatment policies in patients with TBI and intracranial hypertension. The results of this survey indicate a lack of consensus between European neurotrauma centers and provide an opportunity and necessity for comparative effectiveness research.

Keywords: Comparative effectiveness research; ICP; ICU; Intracranial hypertension; Survey; Traumatic brain injury.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable. There are no patients included in present study, and participating centers have given consent by completing the questionnaires.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Indications for ICP monitoring placement. Shown are the percentages of centers that indicated that they would generally place an ICP monitor in patients with the described characteristics. Question was completed by 64 of 66 centers. CT Computed tomographic, GCS Glasgow Coma Scale, ICP Intracranial pressure
Fig. 2
Fig. 2
a Algorithm for ICP management: ICP monitoring. The blue box represents ICP monitoring with the policy of parenchymal monitor on the left and ventricular catheter on the right. Orange boxes are checkpoints during the ICP monitoring process. The N value represents the number of centers that indicated this answer as general policy with a corresponding percentage. The number in parentheses after the titles represents the number of centers that completed this question. 1 Centers that indicated these situations as the top one of the top three reasons for choosing a ventricular or parenchymal catheter. 2 Frequently and always summed. 3 Arterial blood pressure, midauricular level, ventricular motor, not applicable (we use only parenchymal monitors), room air, calibrated by device and meatus externa. 4 Prior to insertion of ventricular catheter for ICP monitoring. 5 Depending on other factors, such as the use of platelet aggregation inhibitors. 6 Multiplate and rotational thromboelastometric analysis prior to surgery if concerns. b Algorithm for ICP management: treatment indications, first- and second-tier treatment. The red box represents ICP treatment with first-tier treatment on top and second-tier treatment at the bottom. Orange boxes are checkpoints during the ICP treatment process. The N value represents the number of centers that indicated this answer as general policy with a corresponding percentage. The number in parentheses after the titles represents the number of centers that completed this question. 1 Decompressive craniectomy is (almost) never performed in our hospital. 2 Multiple answers were possible. 3 Only if ventricles are enlarged. 4 Frequently and always summed. 5 Clonidine or dexmedetomidine. 6 Sufentanil (4), remifentanil (2), β-blockers (1), alfentanil (2), esketamine (1). 7 Standard continuous infusion. 8 PaCO2 < 30 mmHg. 9 Variable, depends on patient. 10 Variable, depends on physician. CPP Cerebral perfusion pressure, CSF Cerebrospinal fluid, EEG Electroencephalogram, HS Hypertonic saline, ICP Intracranial pressure, INR International normalized ratio, IV Intravenous, PaCO 2 Partial pressure of carbon dioxide

Comment in

References

    1. Balestreri M, Czosnyka M, Hutchinson P, Steiner LA, Hiler M, Smielewski P, Pickard JD. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care. 2006;4(1):8–13. doi: 10.1385/NCC:4:1:008. - DOI - PubMed
    1. Maas AI, Menon DK, Lingsma HF, Pineda JA, Sandel ME, Manley GT. Re-orientation of clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness research. J Neurotrauma. 2012;29(1):32–46. doi: 10.1089/neu.2010.1599. - DOI - PMC - PubMed
    1. Bragge P, Synnot A, Maas AI, Menon DK, Cooper DJ, Rosenfeld JV, Gruen RL. A state-of-the-science overview of randomized controlled trials evaluating acute management of moderate-to-severe traumatic brain injury. J Neurotrauma. 2016;33(16):1461–78. doi: 10.1089/neu.2015.4233. - DOI - PMC - PubMed
    1. Signorello LB, McLaughlin JK, Lipworth L, Friis S, Sorensen HT, Blot WJ. Confounding by indication in epidemiologic studies of commonly used analgesics. Am J Ther. 2002;9(3):199–205. doi: 10.1097/00045391-200205000-00005. - DOI - PubMed
    1. Bosco JL, Silliman RA, Thwin SS, Geiger AM, Buist DS, Prout MN, Yood MU, Haque R, Wei F, Lash TL. A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies. J Clin Epidemiol. 2010;63(1):64–74. doi: 10.1016/j.jclinepi.2009.03.001. - DOI - PMC - PubMed

Publication types

MeSH terms