Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion
- PMID: 28874529
- PMCID: PMC5617275
- DOI: 10.1073/pnas.1705595114
Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion
Abstract
Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.
Keywords: aerosol; climate; deglaciation; ozone; volcanism.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





References
-
- Hays JD, Imbrie J, Shackleton NJ. Variations in Earth’s orbit - Pacemaker of ice ages. Science. 1976;194:1121–1132. - PubMed
-
- Cheng H, et al. Ice age terminations. Science. 2009;326:248–252. - PubMed
-
- Landais A, et al. Two-phase change in CO2, Antarctic temperature and global climate during Termination II. Nat Geosci. 2013;6:1062–1065.
-
- Moreno P, et al. Radiocarbon chronology of the Last Glacial Maximum and its termination in northwestern Patagonia. Quat Sci Rev. 2015;122:233–249.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources