Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;1(3):220-3.
doi: 10.1096/fasebj.1.3.2887478.

Glutathione, a first line of defense against cadmium toxicity

Glutathione, a first line of defense against cadmium toxicity

R K Singhal et al. FASEB J. 1987 Sep.

Abstract

Experimental modulation of cellular glutathione levels has been used to explore the role of glutathione in cadmium toxicity. Mice treated with buthionine sulfoximine [an effective irreversible inhibitor of gamma-glutamylcysteine synthetase (EC 6.3.2.2) that decreases cellular levels of glutathione markedly] were sensitized to the toxic effects of CdCl2. Mice pretreated with a sublethal dose of Cd2+ to induce metallothionein synthesis were not sensitized to Cd2+ by buthionine sulfoximine. Mice sensitized to Cd2+ by buthionine sulfoximine were protected against a lethal dose of Cd2+ by glutathione mono isopropyl ester (L-gamma-glutamyl-L-cysteinylglycylisopropyl ester), but not by glutathione. These results are in accord with studies that showed that glutathione mono esters (in contrast to glutathione) are efficiently transported into cells and converted intracellularly to glutathione. The findings indicate that intracellular glutathione functions in protection against Cd2+ toxicity, and that this tripeptide provides a first line of defense against Cd2+ before induction of metallothionein synthesis occurs. The experimental approach used here in which cellular levels of glutathione are decreased or increased seems applicable to investigation of other types of metal toxicity and of other glutathione-dependent biological phenomena.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources