Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps
- PMID: 28883637
- PMCID: PMC5589857
- DOI: 10.1038/s41467-017-00526-3
Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps
Abstract
Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.
Conflict of interest statement
The authors declare no competing financial interests.
Figures




References
-
- World energy needs and nuclear power. World Nuclear Associationhttp://www.world-nuclear.org/information-library/current-and-future-gene....
-
- Haefner, D. R. & Tranter, T. J. Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: a Literature Survey. Report No. INL/EXT-07-12299 (Idaho National Laboratory, 2007).
-
- Clément, B. et al. State of the Art Report on Iodine Chemistry. Report No. NEA/CSNI/R(2007)1 (International Atomic Energy Agency/International Nuclear Information System, 2007).
-
- Bruffey, S. H. et al. A Literature Survey to Identify Potentially Problematic Volatile Iodine-Bearing Species Present in Off-Gas Streams. Report No. FCRD-MRWFD-2015-000421, ORNL-SPR-2015/290, INL/EXT-15-35609 (2015).
-
- Bruffey, S. H., Jubin, R. T. & Jordan, J. A. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions. Report No. FCRD-MRWFD-2016-000357; ORNL/TM-2016/568 (2016).
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources