Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018:27:109-126.
doi: 10.21775/cimb.027.109. Epub 2017 Sep 8.

A Rice Genetic Improvement Boom by Next Generation Sequencing

Affiliations
Free article
Review

A Rice Genetic Improvement Boom by Next Generation Sequencing

Xiangchun Zhou et al. Curr Issues Mol Biol. 2018.
Free article

Abstract

Rice (Oryza sativa L.) is a staple food crop for people worldwide, and a key goal has been to increase its grain yield. An increasing population that relies on a decreasing level of farmland has rendered the traditional method for the isolation and use of genetic loci in rice breeding unsatisfactory. Recently, the rapid development in next generation sequencing (NGS) has boosted the number of genome sequences for hundreds to thousands of rice varieties. A MutMap strategy and bulk segregation analysis (BSA) has been developed to directly identify candidate genes based on NGS. The genome-wide association analysis (GWAS) has become a commonly used approach toward identifying the genetic loci and candidate genes for several traits that are closely associated with grain yield. The Multi-parent Advanced Generation Inter-Cross population (MAGIC) is introduced here to discuss potential applications for mapping QTLs for rice varietal development. These strategies broaden the capacity of functional gene identification and its application as a complementary method to insert mutants that comprise T-DNA and transposons. High-throughput SNP analysis platforms, such as the SNP array, provide novel strategies for genomic-assisted selections (GAS) for rice genetic improvements. Moreover, accurate genome sequence information enables genome editing for the utilization of key recessive genes that control important agronomic traits. This review summarizes how NGS accelerates rice genetic improvements through the identification and utilization of key functional genes that regulate agronomic traits.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources