Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Oct 15;262(29):14190-6.

Mechanisms for direct inhibition of canine gastric parietal cells by somatostatin

Affiliations
  • PMID: 2888765
Free article

Mechanisms for direct inhibition of canine gastric parietal cells by somatostatin

J Park et al. J Biol Chem. .
Free article

Abstract

To examine the potential mechanisms by which somatostatin inhibits gastric acid secretion we studied its effects on isolated canine gastric parietal cells. Using 125I-[Leu8-D-Trp22-Tyr25]somatostatin-28 as ligand, we identified somatostatin-binding sites in parietal cell-enriched fractions of fundic mucosa. Two binding sites with respective dissociation constants of 3.2 X 10(-9) and 2.1 X 10(-7) M were identified. Somatostatin-14 and -28 were equally potent both in displacing bound ligand and in inhibiting parietal cell activity as measured by [14C]aminopyrine uptake. Pertussis toxin reversed the ability of somatostatin to inhibit the uptake of [14C]aminopyrine and production of cAMP by parietal cells stimulated with histamine and forskolin but not with dibutyryl cAMP or pentagastrin. Furthermore, somatostatin had no effect on parietal cell membrane inositol phospholipid turnover or changes in protein kinase C (Ca2+/phospholipid-dependent enzyme) activity induced by carbachol or pentagastrin. These data indicate that somatostatin directly inhibits parietal cell activity via mechanisms both dependent on and independent of the pertussis toxin-sensitive inhibitory guanine nucleotide-binding protein.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources