Using CRISPR-Cas systems as antimicrobials
- PMID: 28888103
- DOI: 10.1016/j.mib.2017.08.005
Using CRISPR-Cas systems as antimicrobials
Abstract
Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Similar articles
-
[CRISPR-Cas systems as weapons against pathogenic bacteria].Biol Aujourdhui. 2017;211(4):265-270. doi: 10.1051/jbio/2018004. Epub 2018 Jun 29. Biol Aujourdhui. 2017. PMID: 29956653 Review. French.
-
CRISPR-Cas antimicrobials: Challenges and future prospects.PLoS Pathog. 2018 Jun 14;14(6):e1006990. doi: 10.1371/journal.ppat.1006990. eCollection 2018 Jun. PLoS Pathog. 2018. PMID: 29902258 Free PMC article. No abstract available.
-
Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems.J Bacteriol. 2016 Apr 28;198(10):1481-6. doi: 10.1128/JB.00086-16. Print 2016 May 15. J Bacteriol. 2016. PMID: 26929301 Free PMC article. Review.
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.mBio. 2014 Jan 28;5(1):e00928-13. doi: 10.1128/mBio.00928-13. mBio. 2014. PMID: 24473129 Free PMC article.
-
Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.J Bacteriol. 2016 Jan 11;198(6):941-50. doi: 10.1128/JB.00897-15. J Bacteriol. 2016. PMID: 26755632 Free PMC article.
Cited by
-
Synergistic Quinolone Sensitization by Targeting the recA SOS Response Gene and Oxidative Stress.Antimicrob Agents Chemother. 2021 Mar 18;65(4):e02004-20. doi: 10.1128/AAC.02004-20. Print 2021 Mar 18. Antimicrob Agents Chemother. 2021. PMID: 33526493 Free PMC article.
-
The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: an in vitro study.Lasers Med Sci. 2021 Apr;36(3):641-647. doi: 10.1007/s10103-020-03104-0. Epub 2020 Jul 28. Lasers Med Sci. 2021. PMID: 32725427
-
Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection.Genes (Basel). 2020 Oct 16;11(10):1209. doi: 10.3390/genes11101209. Genes (Basel). 2020. PMID: 33081172 Free PMC article. Review.
-
CRISPR-Cas Biology and Its Application to Infectious Diseases.J Clin Microbiol. 2019 Mar 28;57(4):e01307-18. doi: 10.1128/JCM.01307-18. Print 2019 Apr. J Clin Microbiol. 2019. PMID: 30429256 Free PMC article. Review.
-
Reversal of mcr-1-Mediated Colistin Resistance in Escherichia coli by CRISPR-Cas9 System.Infect Drug Resist. 2020 Apr 22;13:1171-1178. doi: 10.2147/IDR.S244885. eCollection 2020. Infect Drug Resist. 2020. PMID: 32368108 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources