Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct;31(10):1533-1537.
doi: 10.1016/j.jdiacomp.2017.06.014. Epub 2017 Jul 6.

Left ventricular mass, geometry and function in diabetic patients affected by coronary artery disease

Affiliations

Left ventricular mass, geometry and function in diabetic patients affected by coronary artery disease

Maria Maiello et al. J Diabetes Complications. 2017 Oct.

Abstract

Introduction: Coronary artery disease (CAD) is quite common among diabetic patients, our study goal is to detect the prevalence of left ventricular (LV) adverse changes in geometry, mass and diastolic function on diabetic, but not hypertensive patients, with coronary artery disease(CAD) and LV ejection fraction(LVEF)>45%, actually unknown, because of current guidelines that do not include echocardiographic assessment for follow up of diabetic patients.

Patients and methods: 665 consecutive diabetic patients (443 females, mean age 66±9years), performed a complete echocardiographic assessment according to current ASE echo-guidelines: diastolic dysfunction (DD), eccentric hypertrophy (EH), concentric hypertrophy (CH) and concentric remodeling (CR) of LV were reported. CAD was assessed only by reports of bypass surgery, angioplasty or patients hospitalized for acute myocardial infarction.

Results: 218 patients (32.8%) presented LV changes: LVDD 49 (7.4%), LVEH 68 (10.2%), LVDD and EH 46 (6.9%), LVDD and CH 36 (5.4%), LVDD and CR 19 (2.9%). 447 (67.2%) had no LV changes. 81 (12.1%) patients with CAD, presented: LVDD 17 (21%), LVEH 32 (39.5%), LVDD and EH 9 (11.1%), LVDD and CH 7 (8.6%), LVDD and CR 8 (9.9%), 8 (9.9%) had no LV adverse changes. There were among CAD patients, a significantly higher prevalence of LVDD (p<0.02), LV eccentric hypertrophy (EH) (p<0.05), DD and LVEH (p<0.04), DD and LV concentric hypertrophy(CH) (p<0.03) and DD and LV concentric remodeling (p<0.02), when compared with those patients without CAD.

Conclusion: CAD is related to all different patterns of LV adverse changes in mass, geometry and diastolic function, with a significantly higher prevalence in our population of diabetic patients with normal systolic function. These changes however remain unrecognized until they undergo to a conventional echocardiographic assessment. We support this tool need to be included into future guidelines concerning follow-up of diabetic patients.

Keywords: Coronary artery disease(CAD); Diabetic patients; Diastolic dysfunction; Left ventricular mass; Relative wall thickness.

PubMed Disclaimer

MeSH terms

LinkOut - more resources