Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct 24;5(11):2212-2225.
doi: 10.1039/c7bm00723j.

Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold

Affiliations
Review

Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold

Sandip Sabale et al. Biomater Sci. .

Abstract

In the last decade, magnetic nanoparticles (MNPs), especially superparamagnetic iron oxide nanoparticles (SPIONs), have immensely promoted the advancement of diagnostics and theranostics in the biomedical field. The unique properties of the SPIONs-core and the functional gold (Au)-shell together (SPIONS/Au core/shell or CS) have a wide range of biomedical applications including, but not limited to, magnetic resonance imaging (MRI), dual modality MRI/computed tomography (CT), photo-induced and magnetic fluid hyperthermia (MFH), drug delivery, biosensors, and bio-separation. Researchers have made much effort to develop synthesis strategies for size control and surface modifications to achieve the desired properties of these CSs for applications in in vitro and in vivo studies. This review highlights recent developments in the synthesis and biomedical applications of SPIONs/Au CSs, including γ-Fe2O3/Au (maghemite), Fe3O4/Au (magnetite), and MFe2O4/Au (M = divalent metal ions) in the past seven years. More importantly, current trends of SPIONs/Au in relation to the biochemical industry are surveyed. Finally, we outline the developmental needs of SPIONs/Au from the perspective of material synthesis and their novel applications in disease diagnosis and treatment in the near future.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources