Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov;38(5):2985-2992.
doi: 10.3892/or.2017.5953. Epub 2017 Sep 13.

Biochanin-A induces apoptosis and suppresses migration in FaDu human pharynx squamous carcinoma cells

Affiliations

Biochanin-A induces apoptosis and suppresses migration in FaDu human pharynx squamous carcinoma cells

In-A Cho et al. Oncol Rep. 2017 Nov.

Abstract

The aim of the present study was to investigate biochanin-A-induced anticancer effects and their cellular signaling pathway in FaDu pharyngeal squamous carcinoma cells. Biochanin-A induced cell death through increased cytotoxicity of FaDu cells in a dose- and time-dependent manner. The number of cells with nucleus condensation and the apoptotic population were increased in the FaDu cells stimulated with biochanin-A for 24 h. Furthermore, extrinsic apoptotic factors such as FasL and their downstream target caspase-8 were increased and activated in the FaDu cells treated with biochanin-A in a dose-dependent manner. Moreover, biochanin-A decreased the expression of intrinsic anti-apoptotic factors such as Bcl-2 and Bcl-xL, and increased the level and activation of intrinsic apoptotic factors such as Bad and caspase-9. Finally, biochanin-A induced the activation of caspase-3 and Poly(ADP ribose) polymerase (PARP) in FaDu cells. Our results suggest that biochanin-A-induced apoptosis was mediated by death receptor mediated-extrinsic and mitochondria-dependent intrinsic apoptotic signaling pathways. Biochanin-A also inhibited wound healing migration and proliferation of FaDu cells via the downregulation and inactivation of matrix metalloproteinase-2 and -9 that are mediated by the suppression of p38, mitogen activated protein kinase (MAPK), NF-κB and Akt cellular signaling pathways. Therefore, these data suggest that the biochanin-A may act as a potential chemotherapeutic compound to treat head and neck cancer.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms