Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;31(12):e418-e424.
doi: 10.1097/BOT.0000000000000956.

Proximal Screw Configuration Alters Peak Plate Strain Without Changing Construct Stiffness in Comminuted Supracondylar Femur Fractures

Affiliations

Proximal Screw Configuration Alters Peak Plate Strain Without Changing Construct Stiffness in Comminuted Supracondylar Femur Fractures

Stewart McLachlin et al. J Orthop Trauma. 2017 Dec.

Abstract

Objectives: Assess the effect of proximal screw configuration on the strain in lateral plating of a simulated comminuted supracondylar femur fracture.

Methods: Fractures were simulated in 12 synthetic femurs by removing a 200-mm section of bone, located 60 mm from the intercondylar fossa and repaired using a 16-hole locked lateral plate instrumented with 8 uniaxial strain gauges. Three proximal screw type configurations were evaluated: (1) 4 nonlocking screws, (2) 4 locking screws, and (3) a hybrid configuration of 2 nonlocking screws flanked by a locking screw at each end of the proximal fragment. Each screw type was compared for 2 working lengths (∼90 and 160 mm). The longer working length was created by removing the proximal screw closest to the fracture gap. Testing consisted of a vertical load (500 N) applied to the head of femur. Configurations were compared using plate strain, construct stiffness, and fracture gap displacement as outcome measures.

Results: Plate strain immediately above the fracture gap was reduced with nonlocking screws compared with the other screw types. Plate strains were reduced around the fracture gap with the longer working length but increased for the nonlocking construct at the location of the removed screw. Construct stiffness was not altered by screw type or working length. An increase in fracture gap displacement was only evident in shear translation with the longer working length.

Conclusions: Plate strain in lateral plating of supracondylar femur fractures is decreased using nonlocking screws proximal to the fracture. Increasing the working length reduces plate strains over the working length yet should be cautioned because of increased interfragmentary shear motion.

PubMed Disclaimer

Similar articles

Cited by

  • An analytical model of lateral condylar plate working length.
    Roytman GR, Beitler B, LaMonica J, Spero M, Toy K, Ramji AF, Yoo B, Leslie MP, Baumgaertner M, Tommasini SM, Wiznia DH. Roytman GR, et al. Clin Biomech (Bristol). 2023 Dec;110:106129. doi: 10.1016/j.clinbiomech.2023.106129. Epub 2023 Oct 18. Clin Biomech (Bristol). 2023. PMID: 37871506 Free PMC article.

LinkOut - more resources