Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 2;56(19):12042-12053.
doi: 10.1021/acs.inorgchem.7b01963. Epub 2017 Sep 13.

Photosensitization Behavior of Ir(III) Complexes in Selective Reduction of CO2 by Re(I)-Complex-Anchored TiO2 Hybrid Catalyst

Affiliations

Photosensitization Behavior of Ir(III) Complexes in Selective Reduction of CO2 by Re(I)-Complex-Anchored TiO2 Hybrid Catalyst

Ha-Yeon Cheong et al. Inorg Chem. .

Abstract

A series of cationic Ir(III) complexes ([Ir(btp)2(bpy-X2)]+ (Ir-X+: btp = (2-pyridyl)benzo[b]thiophen-3-yl; bpy-X2 = 4,4'-X2-2,2'-bipyridine (X = OMe, tBu, Me, H, and CN)) were applied as visible-light photosensitizer to the CO2 reduction to CO using a hybrid catalyst (TiO2/ReP) prepared by anchoring of Re(4,4'-Y2-bpy)(CO)3Cl (ReP; Y = CH2PO(OH)2) on TiO2 particles. Irradiation of a solution containing Ir-X+, TiO2/ReP particles, and an electron donor (1,3-dimethyl-2-phenyl-1,3-dihydrobenzimidazole) in N,N-dimethylformamide at greater than 400 nm resulted in the reduction of CO2 to CO with efficiencies in the order X = OMe > tBu ≈ Me > H; Ir-CN+ has no photosensitization effect. A notable observation is that Ir-tBu+ and Ir-Me+ are less efficient than Ir-OMe+ at an early stage of the reaction but reveal persistent photosensitization behavior for a much longer period of time unlike the latter. Comparable experiments showed that (1) the Ir-X+ sensitizers are commonly superior compared to Ru(bpy)32+, a widely used transition-metal photosensitizer, and (2) the system comprising Ir-OMe+ and TiO2/ReP is much more efficient than a homogeneous-solution system using Ir-OMe+ and Re(4,4'-Y'2-bpy)(CO)3Cl (Y' = CH2PO(OEt)2). Implications of the present observations involving reaction mechanisms associated with the different behavior of the photosensitizers are discussed in detail.

PubMed Disclaimer

LinkOut - more resources