Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 13;12(9):e0184612.
doi: 10.1371/journal.pone.0184612. eCollection 2017.

Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages

Affiliations

Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages

Qing Li et al. PLoS One. .

Abstract

Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; n = 9; BW = 266 ± 10.9 kg). As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate ≤ 4.8%), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Canonical pathway network analysis.
The red or green coloring represents down- or up-regulation, respectively, whereas no color indicates the molecule was added from the Ingenuity Knowledge Base (Ingenuity Pathway, Ingenuity Systems, Inc., Redwood City, CA). The intensity of the node color (light to dark) proportionally indicates the degree of differential expression. Straight lines represent binding only, whereas arrowheads symbolize action-on. A crosshead bar signifies inhibition. Labels of interaction or relationship: A = Activation, CP = Canonical Pathway, E = Expression (includes metabolism or synthesis for chemicals), I = Inhibition, LO = Localization. The number in parenthesis for each interaction indicates the number of published references in the Ingenuity Knowledge Base that support the particular interaction.

Similar articles

Cited by

References

    1. Aiken G, Strickland J. Forages and pastures symposium: managing the tall fescue–fungal endophyte symbiosis for optimum forage-animal production. Journal of animal science. 2013;91(5):2369–78. doi: 10.2527/jas.2012-5948 - DOI - PubMed
    1. Siegel MR, Bush LP. Importance of endophytes in forage grasses, a statement of problems and selection of endophytes. Biotechnology of endophytic fungi of grasses. 1994.
    1. Strickland JR, Looper ML, Matthews J, Rosenkrans C, Flythe M, Brown K. Board-invited review: St. Anthony’s Fire in livestock: causes, mechanisms, and potential solutions. Journal of animal science. 2011;89(5):1603–26. doi: 10.2527/jas.2010-3478 - DOI - PubMed
    1. Beardwell C, Robertson GL. The Pituitary. Beardwell C, Robertson GL, editors. London; Boston: Butterworths; 1981. 337 p.
    1. Brown K, Anderson G, Son K, Rentfrow G, Bush L, Klotz J, et al. Growing steers grazing high versus low endophyte (Neotyphodium coenophialum)-infected tall fescue have reduced serum enzymes, increased hepatic glucogenic enzymes, and reduced liver and carcass mass. Journal of animal science. 2009;87(2):748–60. doi: 10.2527/jas.2008-1108 - DOI - PubMed