Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 4;65(39):8544-8551.
doi: 10.1021/acs.jafc.7b02461. Epub 2017 Sep 26.

The Protein and Energy Metabolic Response of Skeletal Muscle to the Low-Protein Diets in Growing Pigs

Affiliations

The Protein and Energy Metabolic Response of Skeletal Muscle to the Low-Protein Diets in Growing Pigs

Yinghui Li et al. J Agric Food Chem. .

Abstract

This study was conducted to determine the effect of low-protein diets on protein and energy metabolism in skeletal muscle, and to elucidate the underlying mechanism. A total of 18 growing pigs (average initial body weight = 36.47 kg) were individually penned and assigned to three treatments; each treatment was fed one of three diets containing either 18%, 15%, or 12% CP. The results showed that reducing dietary CP contents decreased (P < 0.05) the weight of half Longissimus dorsi (LD) muscle and serum concentration of insulin-like growth factor 1 (IGF-1). Compared with the 18% and 15% CP treatments, the 12% CP treatment suppressed (P < 0.05) the components of mammalian target of rapamycin complex 1 (mTORC1) pathway, but upregulated (P < 0.05) the mRNA levels for proteolysis-related genes, and concomitantly caused an increase (P < 0.05) in the percentage of apoptotic cells in LD muscle. Along with lower (P < 0.05) AMP/ATP ratio and greater (P < 0.05) energy charge value in LD muscle of the 12% CP treatment, there was a concurrent decrease (P < 0.05) in the proteins for AMP-activated protein kinase α (AMPKα) pathway. Likewise, these results were also observed in the Biceps femoris muscle with slightly different degree of impacts. These results indicate that the retardation effect of low-protein supply on muscle growth of growing pigs could be likely regulated by inhibiting IGF-1/mTORC1 protein synthesis cascade, along with strong alterations in energy status and AMPKα pathway.

Keywords: energy status; low-protein diet; muscle; pig; protein metabolism.

PubMed Disclaimer

MeSH terms

LinkOut - more resources