Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics
- PMID: 28916175
- PMCID: PMC5696025
- DOI: 10.1016/j.jelectrocard.2017.08.013
Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics
Abstract
Sepsis remains a leading cause of morbidity and mortality among intensive care unit (ICU) patients. For each hour treatment initiation is delayed after diagnosis, sepsis-related mortality increases by approximately 8%. Therefore, maximizing effective care requires early recognition and initiation of treatment protocols. Antecedent signs and symptoms of sepsis can be subtle and unrecognizable (e.g., loss of autonomic regulation of vital signs), causing treatment delays and harm to the patient. In this work we investigated the utility of high-resolution blood pressure (BP) and heart rate (HR) times series dynamics for the early prediction of sepsis in patients from an urban, academic hospital, meeting the third international consensus definition of sepsis (sepsis-III) during their ICU admission. Using a multivariate modeling approach we found that HR and BP dynamics at multiple time-scales are independent predictors of sepsis, even after adjusting for commonly measured clinical values and patient demographics and comorbidities. Earlier recognition and diagnosis of sepsis has the potential to decrease sepsis-related morbidity and mortality through earlier initiation of treatment protocols.
Keywords: Critical care; Dynamics; ECG; Infection; Machine learning; Sepsis.
Copyright © 2017 Elsevier Inc. All rights reserved.
Figures


Similar articles
-
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.Crit Care Med. 2018 Apr;46(4):547-553. doi: 10.1097/CCM.0000000000002936. Crit Care Med. 2018. PMID: 29286945 Free PMC article.
-
Multiscale network representation of physiological time series for early prediction of sepsis.Physiol Meas. 2017 Nov 30;38(12):2235-2248. doi: 10.1088/1361-6579/aa9772. Physiol Meas. 2017. PMID: 29091053 Free PMC article.
-
Machine Learning Models for Analysis of Vital Signs Dynamics: A Case for Sepsis Onset Prediction.J Healthc Eng. 2019 Nov 3;2019:5930379. doi: 10.1155/2019/5930379. eCollection 2019. J Healthc Eng. 2019. PMID: 31885832 Free PMC article.
-
Predictive monitoring for early detection of sepsis in neonatal ICU patients.Curr Opin Pediatr. 2013 Apr;25(2):172-9. doi: 10.1097/MOP.0b013e32835e8fe6. Curr Opin Pediatr. 2013. PMID: 23407184 Free PMC article. Review.
-
[SOMETHING ABOUT DEFINITION AND EPIDEMIOLOGY OF SEPSIS].Acta Med Croatica. 2015 Sep;69(3):125-34. Acta Med Croatica. 2015. PMID: 29077366 Review. Croatian.
Cited by
-
Predictive modeling of biomedical temporal data in healthcare applications: review and future directions.Front Physiol. 2024 Oct 15;15:1386760. doi: 10.3389/fphys.2024.1386760. eCollection 2024. Front Physiol. 2024. PMID: 39473609 Free PMC article. Review.
-
Early detection of sepsis using machine learning algorithms: a systematic review and network meta-analysis.Front Med (Lausanne). 2024 Oct 16;11:1491358. doi: 10.3389/fmed.2024.1491358. eCollection 2024. Front Med (Lausanne). 2024. PMID: 39478824 Free PMC article.
-
Kinematics approach with neural networks for early detection of sepsis (KANNEDS).BMC Med Inform Decis Mak. 2021 May 20;21(1):163. doi: 10.1186/s12911-021-01529-3. BMC Med Inform Decis Mak. 2021. PMID: 34016115 Free PMC article.
-
Machine learning of physiological waveforms and electronic health record data to predict, diagnose and treat haemodynamic instability in surgical patients: protocol for a retrospective study.BMJ Open. 2019 Dec 2;9(12):e031988. doi: 10.1136/bmjopen-2019-031988. BMJ Open. 2019. PMID: 31796483 Free PMC article.
-
Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data.PLoS One. 2019 Feb 22;14(2):e0212665. doi: 10.1371/journal.pone.0212665. eCollection 2019. PLoS One. 2019. PMID: 30794638 Free PMC article.
References
-
- Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine. 2017 Mar 1;43(3):304–77. - PubMed
-
- Frost R, Newsham H, Parmar S, Gonzalez-Ruiz A. Impact of delayed antimicrobial therapy in septic ITU patients. Critical Care. 2010 Apr 1;14(S2):P20.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical