Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987;18(2):366-72.
doi: 10.1002/jnr.490180215.

Pharmacological characteristics of diazepam receptors in neurons and astrocytes in primary cultures

Affiliations

Pharmacological characteristics of diazepam receptors in neurons and astrocytes in primary cultures

A S Bender et al. J Neurosci Res. 1987.

Abstract

Benzodiazepine binding sites in mouse astrocytes and neurons in primary cultures were labeled with [3H]diazepam (1.8 nM), and their inhibition by 14 different benzodiazepines and 3 benzodiazepine antagonists was studied. RO 5-4864, RO 7-3351, and, especially, the antagonist PK 11195 were much more potent in astrocytes than in neurons, whereas the opposite was true for the agonists alprazolam, clonazepam, flurazepam, RO 11-3128, and chlordiazepoxide, and, especially, the antagonists CGS-8216 and RO 15-1788. Flunitrazepam, diazepam, midazolam, RO 11-6893, and RO 5-2181 were about equipotent in the two cell types. The neuronal, but not the astrocytic, binding site showed stereospecificity. In astrocytes most of the drugs had pseudo-Hill coefficients close to one, whereas the pseudo-Hill coefficients in neurons, except for RO 5-4864 and PK 11195, were distinctly lower than one. Thus, the benzodiazepine binding sites had profoundly different pharmacological characteristics in neurons and in astrocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources