Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 18;13(8):1008-1018.
doi: 10.7150/ijbs.19891. eCollection 2017.

Linker Histone in Diseases

Affiliations
Review

Linker Histone in Diseases

Xin Ye et al. Int J Biol Sci. .

Abstract

The linker histone is a protein that binds with the nucleosome, which is generally considered to achieve chromatin condensation in the nucleus. Accumulating evidences suggest that the linker histone is essential in the pathogenesis of several diseases. In this review, we briefly introduce the current knowledge of the linker histone, including its structure, characteristics and functions. Also, we move forward to present the advances of the linker histone's association with certain diseases, such as cancer, Alzheimer's disease, infection, male infertility and aberrant immunity situations, focusing on the alteration of the linker histone under certain pathological conditions and its role in developing each disease.

Keywords: Alzheimer's Disease.; Cancer; Chromatin; Linker Histone; Nucleosome.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Nuclear, cytoplasmic and extracellular functions of linker histone. In the nucleus, linker histone is responsible for chromatin condensation and transcriptional activity regulation. In the cytoplasm, linker histones are secreted to trigger the process of apoptosis when DNA double string break occurs. Certain cells, such as macrophages, contain linker histones granules that show antimicrobial activity. Extracellular linker histone forms NET to trap pathogens, or binds with CRP to kill the target pathogen. On the cell membrane of Kupffer cell, linker histone binds TGs and internalizing them.
Figure 2
Figure 2
Linker histone in the pathway of tumorigenesis. Linker histone can respectively bind with CHD8, PTEN and MTA1. H1 binding with CHD8 represses the transcription of p53. H1 normally binds PTEN to promote chromatin condensation and repress the transcription of oncogenes; yet mutated PTEN represses H1 binding and leads to the chromatin relaxation, and promotes the transcription of oncogene in tumor cells. Also, H1 binding with MTA1 alters the transcriptional activity of several genes. These changes might result in the tumorigenesis of the cells through different pathways.
Figure 3
Figure 3
Linker histone's association with several diseases. Linker histone is able to assist the binding and organization of Aβ monomer and form a larger bundle with more fibrils, which might trigger Alzheimer's disease. In the process of spermatogenesis, the failure to replace a subtype of linker histone H1.1 can result in male infertility. Linker histones can induce the occurrence of type I hypersensitivity and is also associated with SLE. Linker histone also defends the organism from pathogen infection by forming NET or binding with CRP. It can also inhibit the replication of viral DNA by hindering in the both ends of the replication fork.

Similar articles

Cited by

References

    1. Watson JD, Gann A, Baker TA, Bell SP, Levine M, Losick R. Molecular Biology of the Gene. Cold Spring Harbor Laboratory Press; 1987.
    1. Crane-Robinson C. Linker histones: History and current perspectives. Biochim Biophys Acta. 2016;1859:431–5. - PubMed
    1. Roque A, Ponte I, Suau P. Interplay between histone H1 structure and function. Biochim Biophys Acta. 2016;1859:444–54. - PubMed
    1. Cerf C, Lippens G, Muyldermans S, Segers A, Ramakrishnan V, Wodak SJ. et al. Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: sequential assignment and secondary structure. Biochemistry. 1993;32:11345–51. - PubMed
    1. Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature. 1993;362:219–23. - PubMed

Publication types

LinkOut - more resources