Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep 20;10(1):155.
doi: 10.1186/s13045-017-0522-z.

Recent advances of bispecific antibodies in solid tumors

Affiliations
Review

Recent advances of bispecific antibodies in solid tumors

Shengnan Yu et al. J Hematol Oncol. .

Abstract

Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T), bispecific antibody (BsAb) is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides) and targets (e.g., tumor cells) but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs) and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER) family, carcinoembryonic antigen (CEA), and prostate-specific membrane antigen (PSMA) related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.

Keywords: BsAb; CEA; EpCAM; HER family; PSMA; Radioimmunotherapy; Solid tumor.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Molecular formats of bispecific antibodies. According to the Fc domain, BsAbs can be divided into two types: IgG-format molecules and non-IgG-format molecules. IgG-like BsAbs mainly include quandroma, knobs-into-holes, scFv-IgG, (IgG)2, scFv-Fc, and nanobody. The Fc-free BsAbs contain tandscFv, DART, TandAb, F(ab’)2, diabody, ImmTAC, Dock and Lock, and scFv-HSA-scF
Fig. 2
Fig. 2
The comparison of BiTEs (taking MT110 as an example) and triomabs (taking catumaxomab as an example) killing mechanism. The interaction of T cells and tumor cells, which is mediated by BsAbs, initiates the killing process of T cells, including CD3 activation, formation of immunologic synapses, T-cell activation and proliferation, secretion of cytokines and cytotoxic granules, and tumor cell lysis [19]. The activated CD8+ and CD4+ T cells lyse cancer cells predominantly through perforin and granzyme B. The activated T cells secrete various cytokines such as IFN-γ, TNF, IL-2, IL-6, and IL-10 [20]. In addition to the above mechanism, triomabs can recruit other immune cells such as NK cells, macrophages which could kill tumor cells and mediate the co-stimulation between T cells and accessory cells [16]. Simultaneously recruiting and activating different immune effector cells to the tumor site result in potent tumor-cell elimination by the above different immunologic killing mechanisms
Fig. 3
Fig. 3
The classical two-step protocol of pre-targeted radioimmunotherapy (taking TF2 as an example). The first step is to administer the TF2 to blood and offer adequate time for tumor uptake and clearance of excess TF2 in circulation. The second step is to infuse HSG. Finally, excess HSG is cleared from the bloodstream by kidneys

References

    1. Jia Y, Yun CH, Park E, Ercan D, Manuia M, Juarez J, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016;534(7605):129–132. doi: 10.1038/nature17960. - DOI - PMC - PubMed
    1. Goel G, Sun W. Novel approaches in the management of pancreatic ductal adenocarcinoma: potential promises for the future. J Hematol Oncol. 2015;8:44. doi: 10.1186/s13045-015-0141-5. - DOI - PMC - PubMed
    1. Ma W, Gilligan BM, Yuan J, Li T. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol. 2016;9(1):47. doi: 10.1186/s13045-016-0277-y. - DOI - PMC - PubMed
    1. Goel G, Sun W. Advances in the management of gastrointestinal cancers—an upcoming role of immune checkpoint blockade. J Hematol Oncol. 2015;8:86. doi: 10.1186/s13045-015-0185-6. - DOI - PMC - PubMed
    1. Falchi L, Sawas A, Deng C, Amengual JE, Colbourn DS, Lichtenstein EA, et al. High rate of complete responses to immune checkpoint inhibitors in patients with relapsed or refractory Hodgkin lymphoma previously exposed to epigenetic therapy. J Hematol Oncol. 2016;9(1):132. doi: 10.1186/s13045-016-0363-1. - DOI - PMC - PubMed

Publication types

Substances