Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May-Aug;21(2):252-259.
doi: 10.4103/jomfp.JOMFP_150_17.

Epigenetics in oral squamous cell carcinoma

Affiliations
Review

Epigenetics in oral squamous cell carcinoma

K N Hema et al. J Oral Maxillofac Pathol. 2017 May-Aug.

Abstract

Oral squamous cell carcinoma (OSCC) is the most common type of oral neoplasm, accounting for over 90% of all oral malignancies and 38% of head and neck tumors. Worldwide, OSCC is the eighth most common human cancer, with more than 500,000 new cases being diagnosed every year with a fairly onerous prognosis, encouraging further research on factors that might modify disease outcome. Genetic and/or environmental risk factors associated with the development of oral cancer have been sufficiently understood (smoking, alcohol, betel, diet, living habits, etc.). Knowledge of the genetic basis in oral carcinogenesis is still a challenging task. To improve the diagnosis and prevention, a previously unknown type of chromatin modification, known as epigenetic, which is defined as heritable DNA changes that are not encoded in the sequence itself and which are reversible and increasingly appear to serve fundamental roles in cell differentiation and development are studied. Tumors shed their DNA into the blood and epigenetic changes that occur early during tumorigenesis, sometimes even in premalignant lesions, can provide valuable biomarkers. Key components involved in epigenetic regulation are DNA methylation, histone modifications and modifications in micro ribonucleic acids (miRNAs). Epigenetic modifications may contribute to aberrant epigenetic mechanisms seen in oral precancers and cancers. In the near future, epigenetic variations found in oral dysplastic cells can act as a molecular fingerprint for malignancies.

Keywords: Carcinogenesis; DNA; epigenetics; methylation; oral squamous cell carcinoma.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Chromosome structure. DNA is tightly wound around proteins called histones and packaged into cells’ nuclei in the form of chromosomes. Genes are sections of DNA that, under the right circumstances, can be transcribed into proteins[62]
Figure 2
Figure 2
DNA methylation[63]

Similar articles

Cited by

References

    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. - PubMed
    1. Stewart BW, Greim H, Shuker D, Kauppinen T. Defence of IARC monographs. Lancet. 2003;361:1300. - PubMed
    1. Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48:3282–7. - PubMed
    1. Ferris RL, Blumenschein G, Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–867. - PMC - PubMed
    1. Lingen MW, Pinto A, Mendes RA, Franchini R, Czerninski R, Tilakaratne WM, et al. Genetics/epigenetics of oral premalignancy: Current status and future research. Oral Dis. 2011;17(Suppl 1):7–22. - PubMed